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Abstract: We propose a graphical method to visualize possible time-varying correlations be-
tween fifteen stock market values. The method is useful for observing stable or emerging clusters
of stock markets with similar behavior. The graphs, originated from applying multidimensional
scaling techniques (MDS), may also guide the construction of multivariate econometric models.
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1. INTRODUCTION

Economical indexes measure the performance of segments
of the stock market and are normally used to benchmark
the performance of stock portfolios. This paper proposes
a descriptive method which analyses possible correla-
tions/similarities in international stock markets. Its results
are expected to guide the design of statistical models aim-
ing to test hypotheses of interest. Ultimately, the method
can even lead to the postulation of new hypotheses. The
study of the correlation of international stock markets
may have different motivations. Economic motivations to
identify the main factors which affect the behavior of
stock markets across different exchanges and countries.
Statistical motivations to visualize correlations in order to
suggest some potentially plausible parameter relations and
restrictions.The understanding of such correlations would
be helpful to the design good portfolios (Plerou et al., 2000;
Nigmatullin, 2010).

Bearing these ideas in mind the outline of our paper
is as follows. In Section 2 we give the fundamentals
of the multidimensional scaling (MDS) technique, which
is the core of our method, and we discuss the details
that are relevant for our specific application. In Section
3 we apply our method for daily data on fifteen stock
markets, including major American, Asian/Pacific, and
FEuropean stock markets. In Section 4 we conclude the
paper with some final remarks and potential topics for
further research.

2. MULTIDIMENSIONAL SCALING

Measuring and predicting human judgment is an ex-
tremely complex and problematic task. There have been
many techniques developed to deal with such type of
problems. These techniques fall under a generic cate-
gory called Multidimensional Scaling (MDS). Generally
speaking MDS techniques develop spatial representations
of psychological stimuli or other complex objects about

which people make judgements (e.g. preference, related-
ness), that is they represent each object as a point in a
n-dimensional space. What distinguishes MDS from other
similar techniques (e.g. factor analysis) is that in MDS
there are no preconceptions about which factors might
drive each dimension. Therefore, the only data needed is
a measure for the similarity between each possible pair
of objects under study. The result is the transformation of
the data into similarity measures which can be represented
by Euclidean distances in a space of unknown dimensions
(Borg and Groenen, 2005). The greater the similarity of
two objects, the closer they are in the n-dimensional space.
After having the distances between all the objects, the
MDS techniques analyse how well they can be fitted by
spaces of different dimensions. The analysis is normally
made by gradually increasing the number of dimensions
until the quality of fit (measured for example by the
correlation between the data and the distance) is little
improved with the addition of a new dimension. In practice
a good result is normally reached well before the number
of dimensions theorectically needed to a perfectly fit is
reached (i.e. N — 1 dimensions for N objects) (Cox and
Cox, 2001; Kruskal and Wish, 1978; Woelfel and Barnett,
1982; Ramsay, 1980).

In the MDS method a small distance between two points
corresponds to a high correlation between two stock mar-
kets and a large distance corresponds to low or even nega-
tive correlation (Nirenberg and Latham, 2003). A correla-
tion of one should lead to zero distance between the points
representing perfectly correlated stock markets. MDS tries
to estimate the distances for all pairs of stock markets to
match the correlations as close as possible. MDS may thus
be seen as an exploratory technique without any distri-
butional assumptions on the data. The distances between
the points in the MDS maps are generally not difficult to
interpret and thus may be used to formulate more specific
models or hypotheses. Also, the distance between two
points should be interpreted as being the distance condi-
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Fig. 1. Time series for the fifteen indexes from January
2000, up to December 2009.

tional on all the other distances. One possibility to obtain
such an approximate solution is given by minimizing the
stress function. The obtained representation of points is
not unique in the sense that any rotation or translation of
the points retains the distances (Buja et al., 2008).

3. ANALYSIS OF STOCKS MARKETS

In this section we study numerically the fifteen selected
stock markets, including six American markets, six Euro-
pean markets and three Asian/Pacific markets.

Our data consist of the n daily close values of S = 15 stock
markets from January 2, 2000, up to December 31, 2009,
to be denoted as x;(t),1 <t <mn,i=1,---,S5. The stock
markets are listed in Table 1.

Table 1. Fifteen stock markets

7 Stock market index Abbreviation Country
1 All Ordinaries aord Australia
2 EURONEXT BEL-20 bfx Belgium
3 Cotation Assistée en Continu cac France
4 Deutscher Aktien Index dax German
5 Dow Jones Industrial dji USA

6 Footsie ftse UK

7 Iberia Index ibex Spain
8 Bolsa Mexicana de Valores mxx Mexico
9 NASDAQ ndx USA
10 New York Stock Exchange nya USA
11 Standard & Poor’s sp500 USA
12 Shanghai Stock Exchange ssec China
13 Swiss Market Index ssmi Swiss
14 Straits Times Index sti Singapore
15 Toronto Stock Exchange tsx Canada

The data are obtained from data provided by Yahoo
Finance web site http://finance.yahoo.com (2010), and
they measure indexes in local currencies.

Figure 1 depicts the time evolution, of daily, closing price
of the fifteen stock markets versus year with the well-know
noisy and ”chaotic-like” characteristics.

The section is organized in two subsections, the first adopts
an analysis based on the correlation of the time evolution

and the second adopts a metrics based on histogram
distances.

3.1 MDS analysis based on time correlation

In this subsection, we apply the MDS method described
in Section 2 to the time correlation of the selected stock
markets.

For the fifteen markets, we consider the time correlations
between the daily close values. We first compute the
correlations among the fifteen stock markets obtained a
S x S matrix and then apply MDS. In this representation,
points represent the stock markets.

In order to reveal possible relationships between the mar-
ket stocks index the MDS technique is used. In this per-
spective several MDS criteria are tested. The Sammon
criterion revealed good results and is adopted in this work
(Lima and Machado, 2009; Ahrens, 2006). For this purpose
we calculate 15x 15 matrix M based on a correlation coeffi-
cient ¢(i, j), that provides a measurement of the similarity
between two indexes and is defined in equation (1). In
matrix M each cell represents the time correlation between
a pair of indexes:
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1,7 =1,--- 5. Figures 2 and 3, show the 2D and 3D locus
of each index positioning in the perspective of expression
(1), respectively. Figure 4 depicts the stress as function
of the dimension of the representation space, revealing
that a three dimensional space describe a with reasonable
accuracy the "map” of the fifteen signal indexes. Moreover,
the resulting Sheppard plot, represented in figure 5, shows
that a good distribution of points around the 45 degree
line is obtained.
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Fig. 2. Two dimensional MDS graph for the fifteen indexes
using time correlation.
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Fig. 3. Three dimensional MDS graph for the fifteen
indexes using time correlation.
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Fig. 4. Stress plot of MDS representation of the fifteen in-
dexes vs number of dimension using time correlation.

There are several empirical conclusions one can draw from
the graphs in figures 2 and 3, and we will mention just
a few here. We can clearly observe that there seem to
emerge clusters, which show similar behavior. Hence, there
does not seem to be a single world market, but perhaps
there are several important regional markets. This last
observation would match with standard financial theory
which tells us that higher (lower) volatility corresponds
with higher (lower) returns. Indeed, if this would be the
case, one would expect to see similar patterns over time
across returns and volatility.

3.2 MDS analysis based on histogram

For each of the fifteen indexes we draw the corresponding
histogram of relative frequency and we calculate statistical
descriptive parameters like the arithmetic mean (u;), the
standard deviation (o;) and the Pearson’s Kurtosis coeffi-
cient ;.
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Fig. 5. Shepard plot for MDS with a three dimensional
representation of the fifteen indexes using time corre-
lation.
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Fig. 6. Histogram for the CAC, DAX and FTSE indexes

over all time.

Figures 6 and 7 decipt the histograms of the CAC, DAX,
DJI, FTSE, NDX and NYA indexes. The values of the
statistical descriptive parameters are listed in Table 2.

For all the fifteen indexes we calculate the ”histogram’s
distance” (Serratosa and Sanroma, 2008; Sierra et al.,
2009), d; and dy using the equations:
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where 4,5 =1,---,5.

Figures 8-11, show the 2D and 3D locus of each index
positioning in the perspective of the expressions (2a) and
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Fig. 7. Histogram for the DJI, NDX and NYA indexes over
all time.

Table 2. Statistical Descriptive Parameters

i i o Vi
1 4082.52 1074.17  -0.51
2 2956.11 788.96 -0.67
3 4475.70 1071.94 -1.04
4 5324.72 1440.27  -1.00
5 10472.98  1454.40 -0.11
6 5248.86 871.57 -1.24
7 10042.82  2583.65 -0.72
8 15372.58 9168.40 -1.27
9 1753.80 701.35 4.05
10 7034.10 1404.76  -0.58
11 1187.55 198.44 -0.85
12 2079.76 1031.71 2.96
13 6689.10 1337.82  -0.95
14 2179.07 615.19 -0.22
15 9789.64 2360.58  -0.95
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Fig. 8. Two dimensional MDS graph for the fifteen indexes
using histogram’s distance d;.

(2b), respectively demonstrating differences between the
corresponding MDS plots.
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Fig. 9. Two dimensional MDS graph for the fifteen indexes
using histogram’s distance ds.
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Fig. 10. Three dimensional MDS graph for the fifteen
indexes using histogram’s distance dj.

Figures 12-13 depict the stress as function of the dimension
of the representation space based on d; and dy distances,
revealing that a three dimensional space describe with
reasonable accuracy the "map” of the fifteen signal in-
dexes. Moreover, the resulting Sheppard plot, represented
in figures 14-15, show that a good distribution of points
around the 45 degree line is obtained for the two indices.

Curiously in the chart corresponding to the MDS based
on correlation (figure 2) we can see an V shape with the
NDX index at the vertex, and the BFX and AORD at
the corners. The MXX and the SSEC indexes are out of
the angle form. However in the chart corresponding to the
MDS based on the histogram distance (figures 8 and 9)
such an angle form cannot be found. Instead d; leads to a
long ”S” curve having the DJI and the SSEC indexes as
extremes emerges can be observed in figure 8. On the other
hand, ds produces the map of figure 9 where the SSEC,
NDX and MXX are far apart from the rest of the points
similarly to what occurs in the map of figure 2.
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Fig. 11. Three dimensional MDS graph for the fifteen
indexes using histogram’s distance ds.
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Fig. 12. Stress plot of MDS representation of the fifteen
indexes vs number of dimension, using histogram’s
distance d;.

It is interesting to note that in all cases the MXX index
behaves differently from the other (i.e., is not part of
the shapes and regularities formed). Perhaps this may
explained by the fact that Mexico was less affected by the
dot.com crisis in the beginning of the period under study,
since then it was strongly emerging from its own Mezican
Peso Crisis.

4. CONCLUSION

In this paper, we proposed simple graphical tools to
visualize time-varying correlations between stock market
behavior. We illustrated our MDS-based method daily
close values of fifteen stock markets. There are several
issues relevant for further research. A first issue concerns
applying our method to alternative data sets, with perhaps
different sampling frequencies or returns and absolute
returns, to see how informative the method can be in
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Fig. 13. Stress plot of MDS representation of the fifteen
indexes vs number of dimension, using histogram’s
distance do.
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Fig. 14. Shepard plot for MDS with a three dimen-
sional representation of the fifteen indexes, using his-
togram’s distance d; .

other cases. A second issue concerns taking the graphical
evidence seriously and incorporating it in an econometric
time series model to see if it can improve empirical
specification strategies.
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