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Abstract:
By using Jackson’s q-exponential function we introduce the generating function, the recursive
formulas and the second order q-differential equation for the q-Hermite polynomials. This allows
us to solve the q-heat equation in terms of q-Kampe de Feriet polynomials with arbitrary
N moving zeroes, and to find operator solution for the Initial Value Problem for the q-heat
equation. By the q-analog of the Cole-Hopf transformation we construct the q-Burgers type
nonlinear heat equation with quadratic dispersion and the cubic nonlinearity. In q → 1 limit it
reduces to the standard Burgers equation. Exact solutions for the q-Burgers equation in the form
of moving poles, singular and regular q-shock soliton solutions are obtained. Novel, self-similar
property for stationary regular q-shock soliton solution is found.
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1. INTRODUCTION

It is well known that the Burgers’ equation in one dimen-
sion could be linearized by the Cole-Hopf transformation
in terms of the linear heat equation. It allows one to solve
the initial value problem for the Burgers equation and
to get exact solutions in the form of shock solitons and
describe their scattering. In the present paper we study the
q-differential Burgers type equation with quadratic disper-
sion and the cubic nonlinearity, and find its linearization
in terms of the q-heat equation. In terms of the Jackson’s
q-exponential function we introduce the q-Hermite and q-
Kampe-de Feriet polynomials, representing moving poles
solution for the q-Burgers equation. Then we derive the
operator solution of the initial value problem for the q-
Burgers equation in terms of the IVP for the q-heat equa-
tion. We find solutions of our q-Burgers type equation in
the form of singular and regular q-shock solitons. It turns
out that static q-shock soliton solution shows remarkable
self-similarity property in space coordinate x.

2. BASIC Q-CALCULUS

The q-number corresponding to the ordinary number n is
defined as, Kac et al. (2002),

[n]q =
qn − 1
q − 1

, (1)

where q is a parameter, so that n is the limit of [n]q
as q → 1. A few examples of q-numbers are given here:
[0]q = 0, [1]q = 1, [2]q = 1 + q, [3]q = 1 + q + q2. In terms
of these q-numbers, the Jackson q-exponential function is
defined as

eq(x) =
∞∑

n=0

xn

[n]q!
. (2)

For q > 1 it is entire function of x and when q → 1
it reduces to the standard exponential function ex. The
q-exponential function can also be expressed in terms of
infinite product

eq(x) =
∞∏

n=0

1
(1− (1− q)qnx)

=
1

(1− (1− q)x)∞q
, (3)

when q < 1 and

eq(x) =
∞∏

n=0

(
1 + (1− 1

q
)qnx

)
=

(
1 + (1− 1

q
)x

)∞

1/q

, (4)

when q > 1. Thus, the q-exponential function for q < 1
has infinite set of poles at

xn =
1

qn(1− q)
, n = 0, 1, .. (5)

and for q > 1 the infinite set of zeros at

xn = − q

qn(q − 1)
, n = 0, 1, .. (6)

The q-derivative is defined as

Dx
q f(x) =

f(qx)− f(x)
(q − 1)x

, (7)

and when q → 1 it reduces to the standard derivative
Dx

q f(x) → f ′(x). Using the definition of the q-derivative
one can easily see that

Dx
q (axn) = a[n]qxn−1, (8)

Dx
q eq(ax) = aeq(ax). (9)



3. Q-HERMITE POLYNOMIALS

We define the q-Hermite polynomials according to the
generating function

eq(−t2)eq([2]qtx) =
∞∑

n=0

Hn(x; q)
tn

[n]q!
. (10)

From this generating function we have the special values

H2n(0; q) = (−1)n [2n]q!
[n]q!

, (11)

H2n+1(0; q) = 0, (12)
where [n]q! = [1]q[2]q...[n]q, and the parity relation

Hn(−x; q) = (−1)nHn(x; q). (13)

By q-differentiating the generating function (10) according
to x and t we have the recurrence relations correspondingly

DxHn(x; q) = [2]q[n]qHn−1(x; q), (14)

Hn+1(x; q) = [2]q xHn(x; q)− [n]q Hn−1(qx; q)

−[n]q q
n+1

2 Hn−1(
√

qx; q). (15)

Using operator

Mq = qx d
dx , (16)

so that
Mqf(x) = f(qx), (17)

relation (15) can be rewritten as

Hn+1(x; q) = [2]q xHn(x; q)

−[n]q(Mq + q
n+1

2 M√
q)Hn−1(x; q). (18)

Substituting (14) to (18) we get

Hn+1(x; q) =

(
[2]q x− Mq + q

n+1
2 M√

q

[2]q
Dx

)
Hn(x; q)(19)

By the recursion, starting from n = 0 and H0(x) = 1 we
have next representation for the q-Hermite polynomials

Hn(x; q) =
n∏

k=1

(
[2]q x− Mq + q

k
2 M√

q

[2]q
Dx

)
· 1 (20)

We notice that the generating function and the form of our
q-Hermite polynomials are different from the known ones
in the literature, Exton (1983), Cigler et al. (2009), Ra-
jkovic et al. (2001), Negro (1996) . Moreover, our the three
term recurrence relation (15) is q-nonlocal and different
from the standard local relation for orthogonal polynomial
sets, like discrete Al Salam-Carlitz q-polynomials, Ismail
(2005).
In the above expression the operator

Mq + q
n
2 M√

q = 2q
n
4 q

3
4 x d

dx cosh[(ln q
1
4 )(x

d

dx
− n)] (21)

is expressible in terms of the q-spherical means as

cosh[(ln q)x
d

dx
]f(x) =

1
2
(f(qx) + f(

1
q
x)). (22)

Using the definition of, Kac et al. (2002),

(x− a)n
q = (x− a)(x− qa) · · · (x− qn−1a), n = 1, 2, ..

which now we apply for operators, we should distinguish
the direction of multiplication. We consider two cases

(x− a)n
q < = (x− a)(x− qa) · · · (x− qn−1a), (23)

and
(x− a)n

q > = (x− qn−1a) · · · (x− qa)(x− a). (24)

Then, we can rewrite (20) shortly as

Hn(x; q) =
(

([2]q x− Mq Dx

[2]q
)− q

1
2
M√

q Dx

[2]q

)n

√
q >

· 1

First few polynomials are

H0(x; q) = 1,

H1(x; q) = [2]q x,

H2(x; q) = [2]2q x2 − [2]q,

H3(x; q) = [2]3q x3 − [2]2q[3]q x,

H4(x; q) = [2]4q x4 − [2]2q[3]q[4]q x2 + [2]q[3]q[2]q2 .

When q → 1 these polynomials reduce to the standard
Hermite polynomials.

3.1 q-Differential Equation

Applying Dx to both sides of (19) and using recurrence
formula (14) we get q-differential equation for q-Hermite
polynomials

1
[2]q

Dx(Mq + q
n+1

2 M√
q)DxHn(x; q)

−[2]qqxDxHn(x; q) + [2]q[n]qqHn(x; q) = 0. (25)

3.2 Operator Representation

Proposition 1. We have next identity

eq

(
− 1

[2]2q
D2

x

)
eq([2]qxt) = eq(−t2)eq([2]qxt). (26)

Proof. By q- differentiating the q-exponential function in
x

Dn
xeq([2]qxt) = ([2]qt)neq([2]qxt), (27)

and combining then to the sum
∞∑

n=0

an

[n]q!
D2n

x eq([2]qxt) =
∞∑

n=0

[2]2n
q ant2n

[n]q!
eq([2]qxt), (28)

we have relation
eq(aD2

x)eq([2]qxt) = eq([2]2qat2)eq([2]qxt). (29)

By choosing a = −1/[2]2q we get

eq

(
− 1

[2]2q
D2

x

)
eq([2]qxt) = eq(−t2)eq([2]qxt). (30)



Proposition 2. The next identity is valid

Hn(x; q) = [2]neq

(
− 1

[2]2q
D2

x

)
xn. (31)

Proof. The right hand side of (26) is the generating
function for q-Hermite polynomials. Hence expanding both
sides in t we get the result.

Proposition 3.

eq

(
−D2

x

[2]2q

)
xn+1 =

1
[2]q

(
[2]q x− (Mq + q

n+1
2 M√

q)Dx

[2]q

)
eq

(
−D2

x

[2]2q

)
xn.

Proof. we use (31) and relation (19) .
Corollary 4. If function f(x) is analytic and expandable
to power series f(x) =

∑∞
n=0 anxn then we have next q-

Hermite series

eq

(
− 1

[2]2q
D2

x

)
f(x) =

∞∑
n=0

an
Hn(x; q)

[2]nq
. (32)

4. Q- KAMPE DE FERIET POLYNOMIALS

Using relation

Hn(x, t; q) = (−νt)
n
2 Hn

(
x

[2]q
√−νt

)
, (33)

and (19) we have recursion formula for q- Kampe-de Feriet
polynomials

Hn+1(x, t; q) =
(
x + (Mq + q

n+1
2 M√

q)νtDx

)
Hn(x, t; q).

By recursion it gives

Hn(x, t; q) =
n∏

k=1

(
x + (Mq + q

k
2 M√

q)νtDx

)
· 1 (34)

or by notation (24)

Hn(x, t; q) =
(
(x + Mq νt Dx) + q

1
2 M√

q νtDx

)n

√
q >

· 1

First few polynomials are

H0(x, t; q) = 1,

H1(x, t; q) = x,

H2(x, t; q) = x2 + [2]q νt,

H3(x, t; q) = x3 + [2]q[3]q νt x,

H4(x, t; q) = x4 + [3]q[4]q νt x2 + [2]q[3]q[2]q2ν2t2.

5. Q-HEAT EQUATION

We consider the q-heat equation
(Dt − νD2

x)φ(x, t) = 0. (35)

Solution of this equation expanded in terms of parameter
k

φ(x, t) = eq(νk2t)eq(kx) =
∞∑

n=0

kn

[n]!
Hn(x, t; q), (36)

gives the set of q-Kampe-de Feriet polynomial solutions
for the equation. Then we find time evolution of zeroes
for these solutions in terms of zeroes zk(n, q) of q-Hermite
polynomials,

Hn(zk(n, q), q) = 0, (37)

so that
xk(t) = [2]zk(n, q)

√−νt. (38)

For n=2 we have two zeros determined by q-numbers,

z1(2, q) =
1√
[2]q

, (39)

z2(2, q) =
−1√
[2]q

, (40)

and moving in opposite directions according to (38). For
n=3 we have zeros determined by q-numbers,

z1(3, q) =−
√

[3]q
[2]q

, (41)

z2(3, q) = 0, (42)

z1(3, q) =

√
[3]q
[2]q

, (43)

two of which are moving in opposite direction according
to (38) and one is in the rest.

6. EVOLUTION OPERATOR

Following similar calculations as in Proposition I we have
next relation

eq

(
νtD2

x

)
eq(kx) = eq(νtk2)eq(kx). (44)

The right hand side of this expression is the plane wave
type solution of the q-heat equation

(Dt − νD2
x)φ(x, t) = 0. (45)

Expanding both sides in power series in k we get q-Kampe
de Feriet polynomial solutions of this equation

Hn(x, t; q) = eq

(
νtD2

x

)
xn. (46)

Consider an arbitrary analytic function f(x) =
∑∞

n=0 anxn,
then function

f(x, t) = eq

(
νtD2

x

)
f(x) =

∞∑
n=0

aneq

(
νtD2

x

)
xn (47)

=
∞∑

n=0

anHn(x, t; q), (48)

is a time dependent solution of the q-heat equation (45).



According to this we have the evolution operator for the
q-heat equation as

U(t) = eq

(
νtD2

x

)
. (49)

It allows us to solve the initial value problem

(Dt − νD2
x)φ(x, t) = 0, (50)

φ(x, 0+) = f(x), (51)
in the form

φ(x, t) = eq

(
νtD2

x

)
φ(x, 0+) = eq

(
νtD2

x

)
f(x). (52)

7. Q-BURGERS’ TYPE EQUATION

Let us consider the q-Cole-Hopf transformation

u(x, t) = −2ν
Dxφ(x, t)
φ(x, t)

, (53)

then u(x, t) satisfies the q-Burgers’ type Equation with
quadratic dispersion and cubic nonlinearity

Dtu(x, t)−D2
xu(x, t) =

1
2

[
(u(x, qt)− u(x, t)Mx

q )Dxu(x, t)
]−

1
2

[Dx (u(qx, t)u(x, t))] +

1
4

[
u(q2x, t)− u(x, qt)

]
u(qx, t)u(x, t).

.

When q → 1 it reduces to the standars Burgers’ Equation.

7.1 I.V.P. for q-Burgers’ Type Equation

Substituting the operator solution (52) to (53) we find
operator solution for the q-Burgers type equation in the
form

u(x, t) = −2ν
eq

(
νtD2

x

)
Dxf(x)

eq (νtD2
x) f(x)

. (54)

This solution corresponds to the initial function

u(x, 0+) = −2ν
Dxf(x)
f(x)

. (55)

Thus, for arbitrary initial value problem for the q-Burgers
equation with u(x, 0+) = F (x) we need to solve the initial
value problem for the q-heat equation with initial function
f(x) satisfying the first order q-differential equation

(Dx +
1
2ν

F (x))f(x) = 0. (56)

8. Q-SHOCK SOLITON SOLUTION

As a solution of q-heat equation we choose first
φ(x, t) = eq

(
k2t

)
eq (kx) , (57)

then we find solution of the q-Burgers equation as
u(x, t) = −2νk. (58)

We notice that for this solution of the q-heat equation, we
have infinite set of zeros, and space position of zeros is fixed
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Fig. 1. The singular q-shock soliton for k1 = 1, k2 = 10
and t = 0.

during time evolution at points xn = − qn+1

(q−1)k , n = 0, 1, ...

If we choose
φ(x, t) = eq

(
k2
1t

)
eq (k1x) + eq

(
k2
2t

)
eq (k2x) , (59)

then we have the q-Shock soliton solution

u(x, t) = −2ν
k1eq

(
k2
1t

)
eq (k1x) + k2eq

(
k2
2t

)
eq (k2x)

eq (k2
1t) eq (k1x) + eq (k2

2t) eq (k2x)
.(60)

Due to zeroes of the q-exponential function this expression
admits singularities for some values of parameters k1 and
k2. In Fig.1 we plot the singular q-shock soliton for k1 = 1
and k2 = 10 at time t = 0. However for some specific values
of the parameters we found the regular q-shock soliton
solution. We introduce the q-hyperbolic function

coshq(x) =
eq(x) + eq(−x)

2
, (61)

or

coshq(x) =
1
2

(
eq(x) +

1
e 1

q
(x)

)
, (62)

then by using infinite product representation for q-
exponential function we have

coshq(x) =
1
2

((
1 + (1− 1

q
)x

)∞

1/q

+
(

1− (1− 1
q
)x

)∞

q

)
.

From (5),(6) we find that zeroes of the first product are
located on negative axis x, while for the second product
on the positive axis x. Therefore the function has no zeros
for real x and coshq(0) = 1.

If k1 = 1, and k2 = −1, the time dependent factors in
nominator and the denominator of (60) cancel each other
and we have the stationary shock soliton

u(x, t) = −2ν
eq(x)− eq(−x)
eq(x) + eq(−x)

≡ −2ν tanhq(x). (63)

Due to above consideration this function has no singularity
on real axis and we have regular q-shock soliton.

In Fig.2, Fig.3 and Fig.4 we plot the regular q-shock
soliton for k1 = 1 and k2 = −1 at different ranges of
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Fig. 2. The regular q-shock soliton for k1 = 1, k2 = −1, at
range (-50, 50)
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Fig. 3. The regular q-shock soliton for k1 = 1, k2 = −1 at
range (-5000, 5000)

Out[5]=
-400 000 -200 000 200 000 400 000

-1.5

-1.0

-0.5

0.5

1.0

1.5

Fig. 4. The regular q-shock soliton for k1 = 1, k2 = −1 at
range (-500000, 500000)

x. It is remarkable fact that the structure of our shock
soliton shows self-similarity property in space coordinate
x. Indeed at the ranges of parameter x = 50, 5000, 500000
the structure of shock looks almost the same.

For the set of arbitrary numbers k1, ..., kN
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Fig. 5. Multi q-shock regular for k1 = 1, k2 = −1, k3 = 10,
k4 = −10 at t = 0

φ(x, t) =
N∑

n=1

eq

(
k2

nt
)
eq (knx) , (64)

we have multi-shock solution in the form

u(x, t) = −2ν

∑N
n=1 kneq

(
k2

nt
)
eq (knx)

∑N
n=1 eq (k2

nt) eq (knx)
. (65)

In general this solution admits several singularities. To
have regular multi-shock solution we can consider the even
number of terms N = 2k with opposite wave numbers.
When N = 4 and k1 = 1, k2 = −1,k3 = 10,k4 = −10 we
have q-multi-shock soliton solution,

u(x, t) = −2ν
eq(t) sinhq(x) + eq(100t) sinhq(10x)
eq(t) coshq(x) + eq(100t) coshq(10x)

.(66)

In Fig. 5 we plot N = 4 case with values of the wave
numbers k1 = 1, k2 = −1,k3 = 10,k4 = −10 at t = 0.
To have regular solution for any time t and given base q,
we should choose proper numbers ki which are not in the
form of power of q. This question is under the study now.
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