
Resonant Solitons and IntegrableNon-Madelung Fluid SystemsOktay K. Pashaev ��Department of Mathematis, Izmir Institute of Tehnology, Izmir,35430 Turkey (e-mail: oktaypashaev�iyte.edu.tr).Abstrat:It is shown that the real version of the seond AKNS ow as the reation-di�usion system,in addition to the Madelung hydrodynami form written to the urrent veloity, admits theseond hydrodynami form. This form written for the forward and the bakward drift veloityis the Broer-Kaup hydrodynami system, equivalent to the lassial Bousinesque system. Byusing bilinear form and dissipaton solutions for RD system, we onstrut solitons for the Broer-Kaup system in non-Burgers redued form. Resonant dynamis of solitons in BK system isshown and geometrial interpretation in terms of blak holes on pseudo-Riemannian surfae isgiven. Then we show that NLS equation also admits new hydrodynami representation wih anbe onsidered as quantum potential deformation of the BK system. Relations with system ofequations inluding Hamilton-Jaobi-Bellman equation from stohasti ontrol theory and itsquantum potential deformation are shown.Keywords: soliton, resonane, integrable system, hydrodynamis, NLS1. INTRODUCTIONIn 1926, E. Madelung in his �rst short ommuniation onhydrodynami interpretation of the Shrodinger equation,introdued omplex veloity �eldV = �hm grad  = (vq + iv); (1)with the imaginary part interpreted as veloity of the ele-tron. The last one oinides with the Madelung-Landau-London de�nition of the loal mean veloityv = i�h2m�( r � � � r ) = �hm=r  = rSm : (2)From the Madelung representation, following basi prini-ples of analytial mehanis we an onstrut most generalnon-relativisti and nonlinear dispersion. In one spaedimension with  = p�eiS it gives the Cole-Hopf typesubstitution �hm  x = 12(ln �)x + iSx � V (3)for omplex veloity V = vq + iv, where v = �hmSx -is the wave paket veloity or the urrent veloity of thestohasti mehanis, vq = �h2m (ln �)x - internal veloityor the osmoti veloity of the stohasti mehanis (thequantum veloity). Then dispersive part of the energydensity is just the quadrati form�0 = �h22m � x x = m2 �(v2 + v2q ): (4)To onstrut most general extension of the dispersion, wean follow the postulate of analytial mehanis, where thekineti term

T = 12Xij aij(q) _qi _qj (5)is determined by symmetri, positive de�nite quadratiform aij for generalized veloities, playing role of theRiemannian metri. Then we have the general dispersion�0 = m2 �(Ev2 + 2Fvvq +Gv2q ) (6)in terms of two dimensional metri, or the �rst funda-mental form : (E;F;G). Rewritten in terms of the wavefuntion it gives nonlinear dispersive terms�0 = �h28m [2E � x x +Gj jxj jx � (7)(E + 2iF ) 2x �  � (E � 2iF ) � 2x � ℄: (8)Here, in addition to standard linear dispersion, the seondterm represents the quantum potential ontribution inform of the Fisher measure. The Nonlinear Shr�odingerequations with suh term has been onsidered in Pashaevet al. (2002a), Pashaev et al. (2002b), Lee et al. (2007),and for the last two terms see, Pashaev et al. (2008). Fordesription of envelope soliton resonanes, in these papersan extension of metri to the pseudo-Riemannian ase andrelated with it a novel integrable version of NLS equation,i� �t + �2 �x2 + �4 j j2 = s 1j j �2j j�x2  (9)were introdued, Pashaev et al. (2002a). This has beentermed the Resonant Nonlinear Shrodinger (RNLS) equa-tion. It an be onsidered as a third version of the NLSequation, intermediate between the defousing and fous-ing ases. Even though the RNLS model is integrable for



arbitrary values of the oeÆient s, the ritial value s = 1separates two distint regions of behavior. It turns outthat for s < 1 the model redues to onventional NLSequation. However, for s > 1 it an not be redued tothe usual NLS equation, but rather to a reation-di�usion(RD) system. In this ase the model exhibits the resonanesoliton phenomena, Pashaev et al. (2002a).The Resonant NLS equation (9) admits the Madelung hy-drodynami representation for any s and in this Madelungform with s > 1 it appears in plasma physis, Lee et al.(2007). In the present paper we like to show that in thease s > 1 the RNLS (9) admits one more hydrodynamirepresentation in the form of the Broer-Kaup and thelassial Boussinesq system, Broer (1975), Kaup (1975).It allows us onstrut solutions of the last systems in termsof bilinear form for RNLS. We show that soliton solutionsfor this system have resonane dynamis. Geometri inter-pretation of hydrodynami representation and blak holetype struture is found. For s < 1, when the model isreduible to the standard NLS, we �nd new hydrodynamirepresentation in the form of Broer-Kaup system modi�edby quantum potential term.2. MADELUNG HYDRODYNAMICREPRESENTATION AND COLD PLASMAFor s > 1, by  = eR�iS , in terms of e+ = eR+S ,�e� = eR�S after some resalings we have the system��e+�t + �2e+�x2 + �4 e+e�e+ = 0; (10)+�e��t + �2e��x2 + �4 e+e�e� = 0: (11)The Madelung form of this system���t + ��x (�u) = 0; (12)�u�t + u�u�x + ���x + �2 ��x "1� �2��x2 � 12 �1� ���x�2# = 0(13)desribes propagation of long magneto-aousti waves ina old plasma of density � moving with veloity u arossthe magneti �eld, Lee et al. (2007). In this system thedispersion is negative, i.e., the wave veloity dereases withinreasing wave vetor k.3. INTERACTING HEAT EQUATIONThe system (10),(11) implies the onservation law(e+e�)t = (e+x e� � e+e�x )x: (14)By introduing density � = �e+e� it an be rewritten as�t = (�(ln e+)x � �(ln e�)x)x: (15)By using identities �x = �(ln e+)x + �(ln e�)x, �xx =(�(ln e+)x + �(ln e�)x)x, and above ontinuity equation(15) we an get ontinuity equations for � whih inludese+ or e� �eld only. Then ombining with (10) or (11) wehave independent systems for e+ and ��e+t + e+xx � �4 �e+ = 0 (16)

�t + �xx = (2�(ln e+)x)x (17)and for e� and �+e�t + e�xx � �4 �e� = 0 (18)��t + �xx = (2�(ln e�)x)x (19)The �rst system desribes the heat equation interatingwith "potential" � and ontinuity equation, while theseond one is the system for the bakward heat equation.These two systems are related by time reversing transfor-mation t! �t and e� ! e�.The system (16) admits redution � � 0, so that it reduesto the heat equation. Then simplest solution of the heatequation implies solution of the system (16),(17)e+ = e 14 v2t� 12 vx; � = 0: (20)It should be ompared with the next two-parameterisolution, Pashaev et al. (2002a)e+ = � 8���1=2 kek2tosh k(x� vt� x0) e 14 v2t� 12 vx; (21)� = 8�� k2osh2 k(x� vt� x0) : (22)Here density � is the traveling wave soliton, while for e+in moving frame � = x � vt � x0 we have the dissipativesoliton, dissipaton, Pashaev (1997) , with time dependentamplitudee+ = � 8���1=2 k e[(� 14 v2+k2)t� 12 v(���0)℄osh k� : (23)Depending on veloity, it grows with time exponentiallywhen jvj < 2jkj, and deays for jvj > 2jkj. In the ritialase jvj = 2jkj it produes one parametri kink solitone+ = � 8���1=2 k22 [1 + tanh k2 (x+ kt� x0)℄ (24)and � = � 8��� k24 osh2 k2 (x+ kt� x0) : (25)Depending on sign of k it moves to the left if k > 0, and tothe right if k < 0. Similarly, the bakward heat equationadmits solutione� = �e�( 14 v2t� 12 vx); � = 0: (26)It should be ompared with two parametri solutione� = �� 8���1=2 ke�k2tosh k(x� vt� x0) e�( 14 v2t� 12 vx); (27)� = 8�� k2osh2 k(x � vt� x0) : (28)This solution for � represents a soliton, while for e�we have again dissipative soliton with time dependentamplitude. For jvj = 2jkj we have one parametri kinke� = �r 8�� k22 [1 + tanh k2 (x� kt� x0)℄ (29)



and � = � 8��� k24 osh2 k2 (x � kt� x0) : (30)Depending on sign of k it moves to the left if k < 0, andto the right if k > 0.4. HAMILTON-JACOBI-BELLMAN TYPEREPRESENTATIONDeviding (16) on e+ and introduing the nonlinear hangeof variables, similar to the one made �rst by E. Shr�odingerin 1926, A+(x; t) = 2 ln e+(x; t) (31)from system (16), (17) we get the equivalent one�A+t + 12(A+x )2 +A+xx � �2 � = 0 (32)�t + �xx = (�A+x )x (33)Equation (32) is well known in the theory of optimalstohasti ontrol for ontinuous Markov proesses, andin this ontext it is alled the "Hamilton-Jaobi-Bellmanequation"(HJB). The meaning of the variable hange (31)is that equation (32) is a dynami programming equationwhose solution is the minimum value of some ation fun-tional. In our ase we have the HJB equation (32) ou-pled with the ontinuity equation (33). The system (32),(33) an be written as the Euler-Lagrange equation withvariational funtional S = R R Ldxdt and the LagrangiandensityL = 12�(A+t �A+xx)� 14�(A+x )2 + �8 �2: (34)For one dissipaton solution (21) we have solution of thesystem (32),(33) withA+ = �k2 + 12v2� t� vx� (35)2 ln[osh k(x� vt� x0)℄ + ln(8pk�� ) (36)and (22) for �.Similar proedure for the bakward system (18), (19) interms of funtionA�(x; t) = 2 ln(�e�(x; t)) (37)gives the systemA�t + 12(A�x )2 +A�xx � �2 � = 0 (38)��t + �xx = (�A�x )x (39)5. BROER-KAUP HYDRODYNAMICREPRESENTATIONThe heat equation is naturaly onneted with the Burgersequation by the Cole-Hopf transformation. This implies

introdution of veloity �eld v+ = (ln e+)x so that thesystem (16),(17) beomesv+t = (v+x + v+2 � �4 �)x; (40)�t + �xx = (2�v+)x: (41)This system is known as the Broer-Kaup system, Broer(1975), Kaup (1975) . For v� = (ln e�)x the system(18),(19) implies�v�t = (v�x + v�2 � �4 �)x (42)��t + �xx = (2�v�)x (43)- the anti Kaup-Broer system. For � = 0 the systems anbe redued to the Burgers equation and to the anti-Burgersequations orrespondingly.For � 6= 0 from dissipaton solution (21) we get the kinksoliton v+ = �v2 � k tanh k(x� vt� x0) (44)for (40) and from dissipaton solution (27) we get the anti-kink solitonv� = v2 � k tanh k(x� vt� x0) (45)for (42).6. CLASSICAL BOUSSINESQ REPRESENTATIONEquation (40) an be represented in the Euler form. If weintrodue the "pressure" funtionp+ = ��4 �+ v+x (46)then from (40), (41) we have the lassial Boussinesqsystem �v+t + 2v+v+x = �p+x ; (47)p+t = v+xxx + (2p+v+)x: (48)Similar way by introdutionp� = ��4 �+ v�x (49)from (42), (43) we have the lassial anti-Boussinesqsystem v�t + 2v�v�x = �p�x ; (50)�p�t = v�xxx + (2p�v�)x: (51)7. BILINEAR FORM AND SOLITONSRepresenting two real funtions e+, e� in terms of threereal funtions g+, g�, and f ,e� =r 8�� g�f (52)we have the next bilinear system of equations(�Dt �D2x)(g� � f) = 0; (53)D2x(f � f) = �2g+g�: (54)



Any solution of (53),(54) with� = � 8�� g+g�f2 = � 8�� (ln f)xx (55)gives solution of the system (16),(17) and (18),(19).Solution of the Broer-Kaup system (40),(41) isv+ = Dx(g+ � f)g+f = �ln g+f �x ; (56)while for system (42),(43)v� = Dx(g� � f)g�f = �ln g�f �x : (57)Solution of the lassial Boussinesq system (47), (48) isp+ = (ln(g+f))x; v+ = �ln g+f �x ; (58)while for (50), (51) it isp� = (ln(g�f))x; v� = �ln g�f �x : (59)7.1 One Soliton SolutionThe one-dissipaton solution of (53),(54) is given by : g� =�e��1 , f = 1 + e�+1 +��1 +�1;1 , e�1;1 = (k+1 + k�1 )�2, where��1 � k�1 x� (k�1 )2t+ ��(0)1 and k�1 , ��(0)1 are onstants.It gives kink-soliton solution for v+ (40),(41)v+ = k+1 � k�12 � k+1 + k�12 tanh �+1 + ��1 + �112 (60)and soliton shape for density � (Fig1., Fig 2.)� = 2�� (k+1 + k�1 )2osh2 �+1 +��1 +�112 (61)In terms of parameters, k � (k+1 + k�1 )=2, v � �(k+1 � k�1 )it gives solution (44). For the system (42),(43) it gives theanti-kink solution (45).For the lassial Boussinesq system (47),(48) we have kink-soliton p+ = (2k � v2) + k tanh k(x� vt� x0) (62)while for anti-Boussinesq (50),(51), we get anti-kinkp� = (2k + v2) + k tanh k(x� vt� x0): (63)For two-dissipaton solution we haveg� = �[e��1 + e��2 +( �k��12k��21 k+�11 )2e�+1 +��1 +��2 + ( �k��12k��12 k+�22 )2e�+2 +��2 +��1 ℄f =1 + e�+1 +��1(k+�11 )2 + e�+1 +��2(k+�12 )2 + e�+2 +��1(k+�21 )2 + e�+2 +��2(k+�22 )2+( �k++12 �k��12k+�12 k+�21 k+�11 k+�22 )2e�+1 +��1 +�+2 +��2 ;
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Fig. 1. Domain wall shape for veloity �eld.
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Fig. 2. Soliton shape for density �eld.
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Fig. 3. Two soliton veloity �eld, k+1 = 0:5, k�1 = 0:9,k+2 = 0:1, k�2 = 0:35where kabij � kai + kbj ; �kabij � kai � kbj ; ��i � k�i x �(k�i )2t+��(0). This solution shows the resonane haraterof dissipaton interation, Pashaev et al. (2002a)(Fig3.,Fig4.)
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Fig. 4. Four soliton resonane for the density �eld, k+1 = 2,k�1 = 1, k+2 = 1, k�2 = 2, d=167.2 Burgers redutionVeloity v+ for BK system in Hirota form is (57)v+ = g+xg+ � fxf (64)If g+ = onst, then v+ = �(ln f)x whih implies on-straint v+x = �8 �: (65)Under this redution the BK system redues to the Burgersequation v+t � 2v+v+x + v+xx = 0: (66)Then the �rst bilinear equation (54) redues to the heatequation ft � fxx = 0 (67)and the above form v+ = �(ln f)x is just the Cole-Hopftransformation. On the level of one soliton solution withk+1 = 0 it gives just Burgers shok soliton solution. Then,for two dissipaton ase, puting k+1 = 0, k+2 = 0 we get twoshok solitonsv+ = � 2k�1 e��1 + 2k�2 e��21 + 2(k�1 )2 e��1 + 2(k�2 )2 e��2 : (68)This solution desribes fusion of two shok solitons. An-other redution g� = onst, when v� = �(ln f)x, impliesv�x = �8 �: (69)Under this redution the BK system redues to the bak-ward Burgers equation�v�t � 2v�v�x + v�xx = 0: (70)Two shok soliton solutions in this ase desribe deay ofone soliton on two.

8. INTEGRALS OF MOTIONHere we �nd integrals of motion for the Broer-Kaup system(40),(41) under the vanishing boundary onditions � ! 0when jxj ! 1. The �rst integral of motion is the massand it follows just from the seond equation of the system(41) M = 1Z�1 � dx: (71)The momentum onservation law(�v+)t = (�v+x � �xv+ + 2�v+2 � �8 �2)x (72)implies the momentum integralP+ = �2 1Z�1 �v+ dx: (73)The energy onservation law(�v+2 � �xv+ � �8 �2)t =(�3�xv+2 + 2�v+3 + �xxv+ � �xv+x � �2 �2v+ + �4 ��x)xgives the energy integralE+ = 2 1Z�1 (�v+2 + �v+x � �8 �2) dx: (74)In a similar way possible to treat the anti-Broer-Kaupsystem (42),(43), so we have integralsP� = 2 1Z�1 �v� dx; (75)E� = 2 1Z�1 (�v�2 + �v�x � �8 �2) dx: (76)Under Hirota's substitution we haveM = 1Z�1 � dx = 8�� 1Z�1 (ln f)xxdx = 8��(ln f)xj1�1 (77)For one-soliton solution we have the massM = 8�� jk+1 + k�1 j: (78)For momentum we haveP+ = 8�� jk+1 + k�1 j(k�1 � k+1 ) =Mv; (79)where v = k�1 � k+1 .9. GEOMETRICAL REPRESENTATIONWe introdue pseudo-Riemannian metri in terms of thedrift veloities, Pashaev et al. (2002a)g00 = �v+v�; g11 = ��; g01 = 12�(v� � v+): (80)



For RD system this metri desribes pseudo-Riemanniansurfae of onstant salar urvature R = �. At a zero ofdrift veloity, as a solution of equation v+(x; t) = 0 orv�(x; t) = 0, this metri develops horizon singularity andthe blak hole type piture.This metri an be rewritten in terms of the Broer-Kauphydrodynamis. For (40), (41) we haveg00 = v+(�x � �v+); g11 = ��; g01 = 12�x � �v+: (81)At horizon g00 = 0 ! v+ = 0 or �x = �v+ andtanh k(x� vt� x0) = � v2k (82)and for jvj < 2jkj it admits two horizons.For anti-Broer-Kaup system we haveg00 = v�(�x � �v�); g11 = ��; g01 = �12�x + �v�: (83)10. THIRD RD HIERARCHY FLOW AND HIGHERHYDRODYNAMIC SYSTEMThe RD system is the seond ow of SL(2; R) AKNShierarhy. For the third ow of the hierarhy we havee+t = e+xxx + 3�4 e+e�e+x ; (84)e�t = e�xxx + 3�4 e+e�e�x : (85)Following similar proedure as for the RD system in termsof hydrodynami variables v+ = (ln e+)x and � = e+e�we have new systemv+t = (v+xx + 3v+v+x + (v+)3 + 3�4 �v+)x; (86)�t = (�xx � 3�xv+ + 3�(v+)2 + 3�8 �2)x: (87)10.1 KdV RedutionIn partiular ase v+ = 0 it redues to KdV equation�t = �xxx + 3�4 ��x: (88)10.2 Modi�ed MKdV RedutionFor partiular ase � = 0 this system redues to thefollowing modi�ation of the MKdV equationv+t = (v+xx + 3v+v+x + (v+)3)x (89)= v+xxx + 3(v+)2v+x + (3v+v+x )x (90)10.3 Bilinear FormBy substitution e� =q 8�� g�f we get(Dt +D3x)(g� � f) = 0; (91)D2x(F � F ) = �2g+g�: (92)

Then solution of the system is given byv+ = g+xg+ � fxf ; � = 8� �2�x2 lnF: (93)For one soliton solution we have kinkv+ =r4v2 � k212 � k2 tanh k2(x � vt� x0) (94)and soliton � = 84� k2osh2 k2 (x� vt� x0) ; (95)where k = k+1 + k�1 , v = (k+1 )2 � k+1 k�1 + (k�1 )2. The lastrelation implies restrition on speed of soliton jvj > jkj=4.11. BROER-KAUP SYSTEM WITH QUANTUMPOTENTIALIn this setion we show that NLS equation an be rep-resented as new Broer-Kaup hydrodynami system withquantum potential. This representation is alternative tothe known Madelung representation of NLS. If in NLSequation i t +  xx + �4 j j2 = 0 (96)by Madelung substitution  = eR�iS we introdue density� = j j2, enter of mass or urrent veloity V = �2Sxand quantum or osmoti veloity VQ = 2Rx, then interms of � and V one an get the Madelung uid formof NLS. In ontrast here we introdue the drift veloitiesv+ = (VQ � V )=2 and v� = (VQ + V )=2. Then we anrewrite NLS equation in terms of v+ and � asv+t = (v+x + v+2 � �4 �� 2(p�)xxp� )x; (97)�t + �xx = (2�v+)x; (98)and in terms of v� and � as�v�t = (v�x + v�2 � �4 �� 2(p�)xxp� )x; (99)��t + �xx = (2�v�)x: (100)These new equations an be onsidered as a quantizedBroer-Kaup systems.REFERENCESPashaev O.K. and Lee J.-H., Mod. Phys. Lett. A, Vol. 17,No. 24 ,(2002), pp. 1601-1619.Pashaev O K and Lee J H, ANZIAM J.(2002) 44 7381Lee J.-H, Pashaev O.K., Rogers C. and Shie� W., Journalof Plasma Physis, V. 73, (2007), 257-272.Pashaev O.K., Lee J.-H. and Rogers C., Journal ofPhysis. A: Mathematial and Theoretial, Vol. 41, No.24 ,(2008), 452001.Pashaev O.K., Nulear Physis B (Pro. Suppl.), Vol.57,(1997), pp. 338-341.Broer L. J. F., Approximate equations for long waterwaves, Appl. Si. Res. 31 (1975) 377Kaup D. J., A higher-order water- wave equation and themethod for solving it, Progr Theo Phys 54 (1975) 396


