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Abstract:

It is shown that the real version of the second AKNS flow as the reaction-diffusion system,
in addition to the Madelung hydrodynamic form written to the current velocity, admits the
second hydrodynamic form. This form written for the forward and the backward drift velocity
is the Broer-Kaup hydrodynamic system, equivalent to the classical Bousinesque system. By
using bilinear form and dissipaton solutions for RD system, we construct solitons for the Broer-
Kaup system in non-Burgers reduced form. Resonant dynamics of solitons in BK system is
shown and geometrical interpretation in terms of black holes on pseudo-Riemannian surface is
given. Then we show that NLS equation also admits new hydrodynamic representation wich can
be considered as quantum potential deformation of the BK system. Relations with system of
equations including Hamilton-Jacobi-Bellman equation from stochastic control theory and its

quantum potential deformation are shown.
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1. INTRODUCTION

In 1926, E. Madelung in his first short communication on
hydrodynamic interpretation of the Schrodinger equation,
introduced complex velocity field
h d
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with the imaginary part interpreted as velocity of the elec-
tron. The last one coincides with the Madelung-Landau-
London definition of the local mean velocity
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From the Madelung representation, following basic princi-
ples of analytical mechanics we can construct most general
non-relativistic and nonlinear dispersion. In one space
dimension with ¢ = \/ﬁels it gives the Cole-Hopf type
substitution
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for complex velocity V = v, + iv., where v, = %Sw -
is the wave packet velocity or the current velocity of the
stochastic mechanics, v, = 3-(Inp), - internal velocity
or the osmotic velocity of the stochastic mechanics (the
quantum velocity). Then dispersive part of the energy
density is just the quadratic form
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To construct most general extension of the dispersion, we

can follow the postulate of analytical mechanics, where the
kinetic term

T = % %: ai;j(q)4ig; (5)

is determined by symmetric, positive definite quadratic
form a;; for generalized velocities, playing role of the
Riemannian metric. Then we have the general dispersion

m
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in terms of two dimensional metric, or the first funda-
mental form : (E, F,G). Rewritten in terms of the wave
function it gives nonlinear dispersive terms
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Here, in addition to standard linear dispersion, the second
term represents the quantum potential contribution in
form of the Fisher measure. The Nonlinear Schrodinger
equations with such term has been considered in Pashaev
et al. (2002a), Pashaev et al. (2002b), Lee et al. (2007),
and for the last two terms see, Pashaev et al. (2008). For
description of envelope soliton resonances, in these papers
an extension of metric to the pseudo-Riemannian case and
related with it a novel integrable version of NLS equation,
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were introduced, Pashaev et al. (2002a). This has been
termed the Resonant Nonlinear Schrodinger (RNLS) equa-
tion. It can be considered as a third version of the NLS
equation, intermediate between the defocusing and focus-
ing cases. Even though the RNLS model is integrable for



arbitrary values of the coefficient s, the critical value s = 1
separates two distinct regions of behavior. It turns out
that for s < 1 the model reduces to conventional NLS
equation. However, for s > 1 it can not be reduced to
the usual NLS equation, but rather to a reaction-diffusion
(RD) system. In this case the model exhibits the resonance
soliton phenomena, Pashaev et al. (2002a).

The Resonant NLS equation (9) admits the Madelung hy-
drodynamic representation for any s and in this Madelung
form with s > 1 it appears in plasma physics, Lee et al.
(2007). In the present paper we like to show that in the
case s > 1 the RNLS (9) admits one more hydrodynamic
representation in the form of the Broer-Kaup and the
classical Boussinesq system, Broer (1975), Kaup (1975).
It allows us construct solutions of the last systems in terms
of bilinear form for RNLS. We show that soliton solutions
for this system have resonance dynamics. Geometric inter-
pretation of hydrodynamic representation and black hole
type structure is found. For s < 1, when the model is
reducible to the standard NLS, we find new hydrodynamic
representation in the form of Broer-Kaup system modified
by quantum potential term.

2. MADELUNG HYDRODYNAMIC
REPRESENTATION AND COLD PLASMA

For s > 1, by ¢v = ef7%5 in terms of et = eftt9,
—e~ = ef'=9 after some rescalings we have the system
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The Madelung form of this system
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describes propagation of long magneto-acoustic waves in
a cold plasma of density p moving with velocity u across
the magnetic field, Lee et al. (2007). In this system the
dispersion is negative, i.e., the wave velocity decreases with
increasing wave vector k.

3. INTERACTING HEAT EQUATION

The system (10),(11) implies the conservation law
(eTe )= (efe” —eTel)e.

T

(14)

it can be rewritten as
(15)

By introducing density p = —eTe™
pt = (p(lne®), —p(lne”),),.

By using identities p, = p(lnet), + p(lne™ )z, pee =
(p(lnet), + p(lne™);)s, and above continuity equation
(15) we can get continuity equations for p which includes
et or e field only. Then combining with (10) or (11) we
have independent systems for et and p
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and for e~ and p
N .
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The first system describes the heat equation interacting
with ”potential” p and continuity equation, while the
second one is the system for the backward heat equation.
These two systems are related by time reversing transfor-
mation t — —t and e* — e¥.

The system (16) admits reduction p = 0, so that it reduces
to the heat equation. Then simplest solution of the heat
equation implies solution of the system (16),(17)

et = e%”%*%”, p=0. (20)

It should be compared with the next two-parameteric
solution, Pashaev et al. (2002a)
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Here density p is the traveling wave soliton, while for et
in moving frame £ = © — vt — 2o we have the dissipative
soliton, dissipaton, Pashaev (1997) , with time dependent
amplitude
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Depending on velocity, it grows with time exponentially
when |v| < 2|k|, and decays for |v| > 2|k|. In the critical
case |v| = 2|k| it produces one parametric kink soliton
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Depending on sign of k it moves to the left if £ > 0, and to
the right if ¥ < 0. Similarly, the backward heat equation
admits solution

e” = —e(viim3va), p=0. (26)
It should be compared with two parametric solution
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This solution for p represents a soliton, while for e~
we have again dissipative soliton with time dependent
amplitude. For |v| = 2|k| we have one parametric kink
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and
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Depending on sign of k it moves to the left if ¥ < 0, and
to the right if k& > 0.

4. HAMILTON-JACOBI-BELLMAN TYPE
REPRESENTATION

Deviding (16) on e™ and introducing the nonlinear change
of variables, similar to the one made first by E. Schrodinger
in 1926,

At (z,t) =2Inet (z,t) (31)

from system (16), (17) we get the equivalent one
A LA+ AL~ S0 =0 (32)
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Equation (32) is well known in the theory of optimal
stochastic control for continuous Markov processes, and
in this context it is called the "Hamilton-Jacobi-Bellman
equation” (HJB). The meaning of the variable change (31)
is that equation (32) is a dynamic programming equation
whose solution is the minimum value of some action func-
tional. In our case we have the HJB equation (32) cou-
pled with the continuity equation (33). The system (32),
(33) can be written as the Euler-Lagrange equation with
variational functional S = [ [ Ldzdt and the Lagrangian
density
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1 1
L=5p(Af — AL) — 2p(AD)? + T % (34)
2 4 8
For one dissipaton solution (21) we have solution of the
system (32),(33) with

1
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21n[cosh k(z — vt — zg)] + ln(¥) (36)
and (22) for p.

Similar procedure for the backward system (18), (19) in
terms of function

A7 (z,t) = 2In(—e" (z,1)) (37)
gives the system
— ]- —\2 _ A
—pt + paa = (PA; )2 (39)

5. BROER-KAUP HYDRODYNAMIC
REPRESENTATION

The heat equation is naturaly connected with the Burgers
equation by the Cole-Hopf transformation. This implies

introduction of velocity field v+ = (Ine'), so that the
system (16),(17) becomes

A
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This system is known as the Broer-Kaup system, Broer
(1975), Kaup (1975) . For v~ = (lne™), the system
(18),(19) implies
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- the anti Kaup-Broer system. For p = 0 the systems can
be reduced to the Burgers equation and to the anti-Burgers
equations correspondingly.

For p # 0 from dissipaton solution (21) we get the kink
soliton

vt = —g — ktanh k(z — vt — x9) (44)

for (40) and from dissipaton solution (27) we get the anti-
kink soliton

voo= g — ktanh k(z — vt — xo) (45)

for (42).
6. CLASSICAL BOUSSINESQ REPRESENTATION
Equation (40) can be represented in the Euler form. If we

introduce the ”pressure” function

A
pr = —Z/H‘U; (46)

then from (40), (41) we have the classical Boussinesq
system

—v + 20Tl = —pf, (47)
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Similar way by introduction
A
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from (42), (43) we have the classical anti-Boussinesq
system

v, +207v, = —p,,
Pt = Vppy T (2p—v_)$'
7. BILINEAR FORM AND SOLITONS

Representing two real functions e™, e~ in terms of three
real functions ¢g*, g—, and f,

8 g+
+
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we have the next bilinear system of equations
(£Dy = D) (g™ - f) =0, (53)
Di(f-f)=—2g"g". (54)



Any solution of (53),(54) with
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gives solution of the system (16),(17) and (18),(19).
Solution of the Broer-Kaup system (40),(41) is
Du(g" - f) < g*)
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Solution of the classical Boussinesq system (47), (48) is

p* = (n(g* ))as vF = (m %) (58)
while for (50), (51) it is
p = (in(g™ f))ar v = (m 97> (59)

7.1 One Soliton Solution
The one-dissipaton solution of (53),(54) is given by : g =
dellt, f = 14 el o b = (ki + k)72, where
nE = kfr £ (k5)2t +97” and k¥, nF® are constants.
It gives kink-soliton solution for v* (40),(41)
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and soliton shape for density p (Figl., Fig 2.)
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In terms of parameters, k = (k" +£77)/2
it gives solution (44). For the system (42
anti-kink solution (45).

, U
),(43) it gives the

For the classical Boussinesq system (47),(48) we have kink-
soliton

pt = (2k — g) + ktanh k(z — vt — x9) (62)
while for anti-Boussinesq (50),(51), we get anti-kink
p~ = (2k+ g) + ktanh k(z — vt — x9). (63)

For two-dissipaton solution we have
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Fig. 3. Two soliton velocity field, k{7 = 0.5, k; = 0.9,
ki =0.1, ky, =0.35

where kf? = kI + k, l:?fjb = ki — K, np = kot
(k)2 457 This solution shows the resonance character

of dissipaton interaction, Pashaev et al. (2002a)(Fig3.,
Figd.)
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Fig. 4. Four soliton resonance for the density field, k" = 2,
ky =1, kf =1k, =2,d=16

7.2 Burgers reduction

Velocity v* for BK system in Hirota form is (57)
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If g* = const, then v+ = —(In f), which implies con-
straint
A
v = P (65)

Under this reduction the BK system reduces to the Burgers
equation

v — 20Tl +of, =0. (66)

Then the first bilinear equation (54) reduces to the heat
equation

ft_fzzzo

and the above form v™ = —(In f), is just the Cole-Hopf
transformation. On the level of one soliton solution with
ki = 0 it gives just Burgers shock soliton solution. Then,
for two dissipaton case, puting kfr =0, k;r =0 we get two
shock solitons

(67)
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This solution describes fusion of two shock solitons. An-

other reduction g~ = const, when v~ = —(In f),, implies
_ A
vy = QP (69)

Under this reduction the BK system reduces to the back-
ward Burgers equation

vy —2v v, +v,, =0.

(70)

Two shock soliton solutions in this case describe decay of
one soliton on two.

8. INTEGRALS OF MOTION

Here we find integrals of motion for the Broer-Kaup system
(40),(41) under the vanishing boundary conditions p — 0
when |z| — oo. The first integral of motion is the mass
and it follows just from the second equation of the system

(41)
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The momentum conservation law
2 A
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implies the momentum integral
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The energy conservation law
2 A
(po™" = vt = 2% =
2 3 A A
(=3p2v™" + 200" + poov™ — pouvd = "0 + Tppa)a
gives the energy integral
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In a similar way possible to treat the anti-Broer-Kaup
system (42),(43), so we have integrals

P =2 / pv~ dz, (75)
[ A
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Under Hirota’s substitution we have

M= [ ptr == [0 f)ds = Stn e ()

For one-soliton solution we have the mass

8
For momentum we have
Pr= Sk k| k) = M, (79)

where v =k, — kf
9. GEOMETRICAL REPRESENTATION

We introduce pseudo-Riemannian metric in terms of the
drift velocities, Pashaev et al. (2002a)

_ 1 _
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For RD system this metric describes pseudo-Riemannian
surface of constant scalar curvature R = A. At a zero of
drift velocity, as a solution of equation v*(z,t) = 0 or
v~ (z,t) = 0, this metric develops horizon singularity and
the black hole type picture.

This metric can be rewritten in terms of the Broer-Kaup
hydrodynamics. For (40), (41) we have

1
Joo = U+(Pz - PU+), gir = —p, go1 = §Pz - PU+- (81)
At horizon goo = 0 — vT =0 or p, = pv™ and
v
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and for |v| < 2|k| it admits two horizons.
For anti-Broer-Kaup system we have
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10. THIRD RD HIERARCHY FLOW AND HIGHER
HYDRODYNAMIC SYSTEM

The RD system is the second flow of SL(2,R) AKNS
hierarchy. For the third flow of the hierarchy we have

A

eZL = e:zz + 3?6+eie:7 (84)
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Following similar procedure as for the RD system in terms
of hydrodynamic variables v™ = (Inet), and p = ete~
we have new system

3A
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10.1 KdV Reduction

In particular case vT = 0 it reduces to KdV equation

3A
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10.2 Modified MKdV Reduction
For particular case p = 0 this system reduces to the
following modification of the MKdV equation
v = (v, + 3vTul + (v)?), (89)
= Vf0 +3(07)%0f + Bvtol), (90)
10.3 Bilinear Form
By substitution e* = %% we get
(Di+ DY) (g™ - f) =0, (91)
Di(F-F)=-2g%¢g". (92)

Then solution of the system is given by
'U+ = Q fz = 8 62
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For one soliton solution we have kink
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and soliton
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where k = ki + k7, v = (k)% — k"k; + (k7)2. The last
relation implies restriction on speed of soliton |v| > |k|/4.

11. BROER-KAUP SYSTEM WITH QUANTUM
POTENTIAL

In this section we show that NLS equation can be rep-
resented as new Broer-Kaup hydrodynamic system with
quantum potential. This representation is alternative to
the known Madelung representation of NLS. If in NLS
equation

it s+ SN = 0 (96)

by Madelung substitution ¢ = e~ we introduce density
p = ||, center of mass or current velocity V = —2S,
and quantum or osmotic velocity Vo = 2R,, then in

terms of p and V one can get the Madelung fluid form
of NLS. In contrast here we introduce the drift velocities
vt = (Vg —V)/2 and v= = (Vg + V)/2. Then we can
rewrite NLS equation in terms of v and p as

+ — (ot 42 _A _2(\//_’)m
vy = (vl +wv 4 7 ) (97)
P+ Pz = (2pv7 )z, (98)

and in terms of v~ and p as
_ — _2 A (\/,E)mm
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v, = (v, +v 1P 7 ) (99)
=Pt + pza = (2pv7 )a. (100)

These new equations can be considered as a quantized
Broer-Kaup systems.
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