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Abstract: We construct a Madelung fluid model with specific time variable parameters as
dissipative quantum fluid and linearize it in terms of Schrödinger equation with time dependent
parameters. It allows us to find exact solutions of the nonlinear Madelung system in terms of
solutions of the Schrödinger equation and the corresponding classical linear ODE with variable
frequency and damping. For the complex velocity field the Madelung system takes the form of
a nonlinear complex Schrödinger-Burgers equation, for which we obtain exact solutions using
complex Cole-Hopf transformation. In particular, we discuss and give exact results for nonlinear
Madelung systems related with Caldirola-Kanai type dissipative harmonic oscillator.
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1. INTRODUCTION

In the recent years the Madelung fluid description of
quantum mechanics has been applied to some fields where
the quantum formalism is a useful tool for describing the
evolution of classical (quantum-like) systems and studying
the dispersionless or semiclassical limit of nonlinear par-
tial differential equations of Schrödinger type, Zakharov
(1994). The Madelung fluid representation, proposed first
by Madelung (1926), being a complex quantity, represents
a solution of the Schrödinger equation, in terms of modulus
and phase. Substituted to the Schrödinger equation it
allows to obtain a pair of nonlinear hydrodynamic type
equations. Thus, the Madelung fluid equations are nonlin-
ear system of PDEs, while the Schrödinger equation is the
linear one. Then, the Madelung transform is a complex
linearization transform, similar to the Cole-Hopf trans-
formation, linearizing the nonlinear Burgers equation in
terms of the linear heat equation, see Cole (1951) and Hopf
(1950). Nonlinear models admitting such type of direct
linearization are called by F. Calogero as C-integrable
models.

In this work, we construct a Madelung fluid model with
time variable parameters as dissipative quantum fluid and
linearize it in terms of Schrödinger equation with time
dependent parameters. It allows us to find exact solution
of the nonlinear Madelung system in terms of solutions
to the Schrödinger equation and the corresponding clas-
sical linear ODE with variable frequency and damping.
Moreover, the Madelung system written for the com-
plex velocity field takes the form of a nonlinear complex
Schrödinger-Burgers equation, of which exact solutions
were obtained using complex Cole-Hopf transformation.

As known, in the usual Cole-Hopf transformation, zeros of
the linear heat equation lead to poles in the corresponding
Burgers equation. Similarly, in our case, by the com-
plex Cole-Hopf transformation, zeros of the Schrödinger
equation transform to pole singularities in the complex
Schrödinger-Burgers equation. Thus, using exact solutions
of the linear problem, one can find also the dynamics of
the poles in the corresponding nonlinear problem. As an
exactly solvable model, we describe a dissipative nonlinear
complex Schrödinger-Burgers equation of Caldirola-Kanai
type, Caldirola (1941), Kanai (1948). Exact solutions of
the nonlinear models are found and the motion of zeros
and poles is discussed explicitly. Some illustrative plots
are constructed.

2. THE SCHRÖDINGER EQUATION AND ITS
MADELUNG REPRESENTATION

2.1 Solution of the Schrödinger Equation

Consider the one-dimensional Schrödinger equation for
harmonic oscillator with time-dependent parameters

ih̄
∂Ψ

∂t
= − h̄2

2µ(t)

∂2Ψ

∂q2
+
µ(t)ω2(t)

2
q2Ψ, (1)

and initial condition

Ψ(q, t0) = ψ(q), −∞ < q <∞. (2)

Using the Evolution operator method, Wei et-al (1963), it
was proved that, see Büyükaşık et-al. (2009), if x(t) is the
solution of the classical equation of motion

ẍ+
µ̇(t)

µ(t)
ẋ+ ω2(t)x = 0, x(t0) = x0 6= 0, ẋ(t0) = 0, (3)



then the solution of the IVP (1)-(2) is found as Ψ(q, t) =

Û(t, t0)ψ(q), where the evolution operator is
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and the auxiliary functions are
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;
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µ(ξ)x2(ξ)
, g(t0) = 0;

h(t) = ln
|x(t0)|
|x(t)| .

In particular, if the initial function is the normalized eigen-
state corresponding to eignenvalue Ek = h̄2Ω0(k+ 1/2) of
the Hamiltonian for the standard harmonic oscillator, that
is
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Hk(
√
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then, the time-evolved state for the Schrödinger equation
(1) is

Ψk(q, t) = Û(t, t0)ϕk(q)
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where
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The corresponding probability density is then
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2.2 Madelung representation

As known, Madelung representation of the complex-valued
wave function

Ψ(q, t) =
√
ρ exp

(
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h̄
S

)
= exp

(
1

2
ln ρ+

i

h̄
S

)
, (8)

where ρ = ρ(q, t) is the probability density and S = S(q, t)
is the action, both being real-valued functions, decomposes
the Schrödinger equation (1) into a system of nonlinear
coupled partial differential equations,
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The first equation may be viewed as a generalization of the
usual Hamilton-Jacobi equation. The term with explicit
h̄ dependence is the quantum potential encoding the
quantum aspects of the theory. When h̄→ 0, the equation
becomes Hamilton-Jacobi equation for a non-relativistic
particle with time dependent mass. The second equation
is a continuity equation expressing the conservation of
probability density. Using the relation (8), one can see that
the system (9), with general initial conditions

S(q, t0) = S̃(q), ρ(q, t0) = ρ̃(q), (10)

S̃(q), ρ̃(q) being real-valued functions, has formal solution

S(q, t) = −ih̄ ln

(
Ψ(q, t)

|Ψ(q, t)|

)
, ρ(q, t) = |Ψ(q, t)|2, (11)

where Ψ(q, t) is a solution of the Schrödinger equation (1)
with initial condition

Ψ(q, t0) =
√
ρ̃(q) exp(

i

h̄
S̃(q)). (12)

We remark that, since Ψ(q, t) is complex-valued, in general
S(q, t) is multi-valued, i.e. S(q, t) = −ih̄ ln(Ψ/|Ψ|)+2πnh̄,
n = 0,±1,±2, ..., but fixing the initial condition S(q, t0) =

S̃(q) leads to a single-valued solution of the IVP.

2.3 Hydrodynamic Analog

Introducing classical velocity, v(q, t) =
1

µ(t)

∂S

∂q
, the sys-

tem (9) transforms to Madelung fluid equations
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∂
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(13)

These equations are similar to the classical hydrodynamic
equations where ρ(q, t) is the density and v(q, t) is the
velocity field of the one-dimensional fluid. The system of
fluid equations (13) with general initial conditions

v(q, t0) = ṽ(q), ρ(q, t0) = ρ̃(q),

ṽ(q), ρ̃(q) being real-valued functions, has formal solution

v(q, t) = − ih̄

µ(t)

∂

∂q
ln

(
Ψ(q, t)

|Ψ(q, t)|

)
, ρ(q, t) = |Ψ(q, t)|2,(14)

where Ψ(q, t) is solution of the Schrödinger equation (1)
subject to the initial condition

Ψ(q, t0) =
√
ρ̃(q) exp



 i

h̄
µ(t0)
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 .

3. POTENTIAL SCHRÖDINGER-BURGERS
EQUATION

Writing the wave function in the form

Ψ(q, t) = exp

(
i

h̄
µ(t)F (q, t)

)
,

where F (q, t) is a complex potential, the IVP for the
Schrödinger equation (1) transforms to the following IVP
for the nonlinear potential Schrödinger-Burgers equation
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(15)

Therefore, the formal solution of this problem is

F (q, t) = − ih̄

µ(t)
(ln Ψ(q, t)) , (16)

where Ψ(q, t) is solution of the Schrödinger equation (1),
with initial condition

Ψ(q, t0) = exp

(
i

h̄
µ(t0)F̃ (q)

)
.

Note again, that fixing the initial condition we obtain a
single-valued solution F (q, t). Now, using the Madelung
representation (8) and relation (16), one can write

F (q, t) = F1 + iF2 =
1

µ(t)
S − ih̄

2µ(t)
ln ρ, (17)

where F1 = F1(q, t) represents the velocity potential, and
F2 = F2(q, t) the stream function of the fluid, ( F1,F2 being
real-valued). Accordingly, the real and imaginary parts of
the potential Schrödinger-Burgers equation (15) become
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(18)

Using the relations (17) and (11), one can see that the
nonlinear system (18) with general initial conditions

F1(q, t0) = F̃1(q), F2(q, t0) = F̃2(q)

and F̃1(q), F̃2(q) real-valued functions, has solution of the
form

F1 = − ih̄

µ(t)
ln

(
Ψ

|Ψ|

)
, F2 = − h̄

µ(t)
ln(|Ψ|),

where Ψ(q, t) is solution of the Schrödinger equation (1)
with initial condition

Ψ(q, t0) = exp

(
i

h̄
µ(t0)F̃1(q)

)
× exp

(
− 1

h̄
µ(t0)F̃2(q)

)
.

4. SCHRÖDINGER-BURGERS EQUATION

Representation of the wave function in the form

Ψ(q, t) = exp


 i

h
µ(t)

q∫
V (ξ, t)dξ


 , (19)

where V (q, t) is a complex velocity, transforms the IVP
for the Schrödinger equation (1) to the following IVP
for a nonlinear Schrödinger-Burgers equation with time
dependent coefficients
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Solution of this IVP is found by the complex Cole-Hopf
transformation

V (q, t) = − ih̄

µ(t)

∂

∂q
(ln Ψ(q, t)), (21)

where Ψ(q, t) is solution of the the Schrödinger equation
(1), corresponding to initial condition

Ψ(q, t0) = ψ(q) = exp
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µ(t0)
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 .

Using the Madelung representation (8) and the complex
Cole-Hopf transformation (21) one can write the complex
velocity function in the form

V (q, t) = v + iu =
1

µ(t)

∂S

∂q
− ih̄

2µ(t)

∂

∂q
(ln ρ), (22)

where v = v(q, t), u = u(q, t) are real-valued, v repre-
sents the classical velocity, and u the quantum velocity.
This splits the Schrödinger-Burgers equation into real and
imaginary parts, respectively,
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Using relations (22) and (11), we find that the system
of nonlinear coupled equations (23) with general initial
conditions

v(q, t0) = ṽ(q), u(q, t0) = ũ(q)

has formal solution
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)
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∂
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where Ψ = Ψ(q, t) is a solution of the Schrödinger equation
(1) with general initial condition

Ψ(q, t0) = exp(
iµ(t0)

h̄

q∫
ṽ(ξ)dξ) × exp(−µ(t0)

h̄

q∫
ũ(ξ)dξ).

5. EXACTLY SOLVABLE NONLINEAR MODELS

The Caldirola-Kanai model, Caldirola (1941),Kanai (1948),
which is a one dimensional system with an exponentially
increasing mass, is the best known model of harmonic
oscillator with time-dependent parameters. Here, using
the general discussion in the previous parts, we obtain
exact solutions of the nonlinear problems related with the
Caldirola-Kanai oscillator
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Ψ(q, 0) = ψ(q), q ∈ R,
(24)

where µ(t) = eγt is the integrating factor, Γ(t) = γ
is the damping term, γ > 0, and ω2(t) = ω2

0 is a
constant frequency. As known, solutions of the Cadirola-
Kanai oscillator can be found in terms of the solution to
the corresponding classical equation of motion

ẍ+ γẋ+ ω2
0x = 0, x(0) = x0 6= 0, ẋ(0) = 0. (25)

Clearly, according to the sign of Ω2 = ω2
0−(γ2/4) there are

three different type of behavior- critical damping, under
damping and over damping. In this article, we discuss the
critical damping case, i.e. Ω2 = 0. If Ω2 = ω2

0−(γ2/4) = 0,
then the classical equation (25) has solution
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Then, using (5), exact solutions of the Schrödinger equa-
tion (24) with initial conditions Ψ(q, 0) = ϕk(q), are
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a. Madelung representation of Caldirola-Kanai Oscillator.
Madelung representation of the wave function decomposes
the Schrödinger equation (24) into a system of nonlinear
coupled partial differential equations,
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This system of equations with specific initial conditions
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b. Hydrodynamic equations. The system of hydrodynamic
equations for the velocity and density of the fluid
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and ρk(q, t) given by (26).

c. The potential Schrödinger-Burgers equation. The IVP
for potential Schrödinger-Burgers equation
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d. The Schrödinger-Burgers equation. The IVP for the
non-linear complex Schrödinger-Burgers equation
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The complex velocity function, written in the form
V (q, t) = v(q, t) + iu(q, t), where v, u are real-valued func-
tions, splits the Schrödinger-Burgers equation (27) into the
system
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Fig. 1. Probability density ρ2(q, t).
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This system with specific initial conditions
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Hk(
√
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,

clearly, has solutions v(q, t) and uk(q, t) which are respec-
tively, the real and imaginary parts of Vk(q, t) in expression
(28).

e. Motion of Zeros and Poles, Ω2 = 0. From expression
(26) we see that the solution Ψk(q, t) (also ρk(q, t) ) of the
linear Schrödinger equation (24) has zeros at points where
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and these zeros are pole singularities of the solution Vk(q, t)
(also |Vk(q, t)|2 ) for the nonlinear Schrödinger-Burgers
equation (27). Therefore, for each k = 0, 1, 2, 3, ..., the
motion of the zeros and poles is described by the curves

q
(l)
k (t) = τ

(l)
k

√
h̄

ω0
× e−

γ

2
t ×
√

(1 +
γ

2
t)2 + w2

0t
2, (29)

where τ
(l)
k , l = 1, 2, ...k, are the zeros of the Hermite

polynomial Hk(ξ). Clearly, at initial time the position of

the zeros and poles is q
(l)
k (0) = τ

(l)
k

√
h̄/ω0, and when

γ > 0, t → ∞ one has q
(l)
k (t) → 0 due to increasing

mass µ(t) = eγt, (dissipation).

In Fig. 1, we illustrate the probability density function
ρ2(q, t) for Caldirola-Kanai oscillator, which shows Dirac-
delta behavior at time infinity. In Fig. 2 we show the
behavior of |V2(q, t)|2. The motion of the corresponding

zeros and poles, described by q
(1)
2 (t) = − e−t

√
2

√
(1 + t)2 + t2

and q
(2)
2 (t) = −q(1)2 (t), is presented in Fig. 3. For all plots,

constants are chosen as x0 = h̄ = ω0 = 1 and γ = 2.

6. CONCLUSION

In this short article, we obtain exact solutions of nonlinear
Madelung systems with specific time dependent parame-
ters, and in particular we discuss nonlinear models related
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Fig. 2. Plot of |V2(q, t)|2.
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Fig. 3. Curves q
(1)
2 (t) and q

(2)
2 (t), describing the moving

zeros of Ψ2(q, t), and the poles of V2(q, t).

with the critical case of the Caldirola-Kanai oscillator.
Similarly, we can obtain exact solutions for the under
damping and over damping cases. Moreover, our recent
results can be applied to find exact solutions to a wide
class of dissipative quantum fluid systems whose lineariza-
tion takes the form of quantum Sturm-Liouville problem,
Büyükaşık et-al. (2009). This gives also possibility to study
the dynamics of the zeros and poles of the linear and
nonlinear systems, respectively.
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