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AbstractIn this paper we study gait transition in a central pattern generator (CPG)
model for bipedal locomotion. This model is proposed by Golubitsky, Stewart, Buono
and Collins (14; 15) and is studied further by Pinto and Golubitsky (28). It is a network
of four coupled identical cells, with D2 symmetry. Each cell is modeled by a system of
ordinary differential equations.
We briefly review the work done in (28). We revisite the symmetry arguments that allow
us to enumerate the periodic solutions predicted by the CPG model, identified with
primary and secondary gait types. Using bifurcation theory, we list the bifurcations
between these two types of gaits.
We compute gait transition in the 4-cell CPG model for bipeds. We use the Morris-
Lecar equations (26; 34) as the internal dynamics for each cell. We consider two types
of coupling between the cells: diffusive and synaptic. We obtain the secondary gait skip
by bifurcation of the primary gaits walk and run. The secondary gait gallop is obtained
by bifurcation of the primary gait walk.
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1. INTRODUCTION

Animal locomotion is an interesting research issue
for scientists in distinct areas of science. Every ani-
mal has its own form of locomotion, however, there
are symmetries in the locomotor patterns that are
common in different species. For example, the pronk
of quadrupeds is “symmetrically” identical to the
two-legged hop of bipeds, in the sense that in both
quadrupeds and bipeds, all legs perform the same
movement at the same time.

Locomotion is a complex mechanism, involving the
neural bases that are behind animal locomotion.
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Fundação para a Ciência e a Tecnologia (FCT) to AS. CP was
supported by Fundação para a Ciência e a Tecnologia (FCT)
through the Centro de Matemática da Universidade do Porto
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In vertebrates goal-directed locomotion involves the
central pattern generators, the brainstem command
systems for locomotion, the control systems for steer-
ing and control of body orientation, and the neu-
ral structures responsible for the selection of motor
primitives. In this paper, we focus in the neural
networks that send signals to the muscle groups in
each joint, the so-called CPGs. We give numerical
evidence of gait transition in a CPG model for legs
rhythms in bipeds, supporting analytical results.

We note that there are still controversial issues con-
cerning the existence of locomotor CPGs in mam-
mals. Despite this, we assume here their existence,
based on the work of many authors (5; 8; 9).

CPGs are located somewhere in the nervous system
(6; 7; 14; 15; 17; 18). Mathematically, CPGs are mod-
eled by networks of systems of ordinary differential



equations (ODE’s), where each system models one
neuron (or collections of neurons) and it is assumed
that all neurons (or cells) are identical. Identical
cells are defined as cells which are modeled by the
same system of ODE’s. CPG models are capable of
producing the locomotor rhythms of animals, such as
walking, jumping, running, galloping, among others.

Investigators in many areas have been interested in
animal locomotion (2; 3; 4; 14; 15; 19; 20; 21; 28).
Calabrese and Marder (4) discuss the generation of
rhythmic movements by central pattern-generating
networks in both invertebrates and vertebrates ner-
vous systems using cellular, circuit and computa-
cional analyses. Kopell and Ermentrout (19; 20; 21)
show that networks of coupled oscillators with a
given symmetry, can be used to model the locomotor
patterns of animals, in particular the lamprey. Golu-
bitsky, Stewart, Buono and Collins (14; 15) propose
a CPG model for locomotion patterns of animals
with 2n legs (see Figure 1). This model is based on
the assumption that each leg receives signals from
two cells. This is an analogy with what happens in
animals joints, where two muscles groups, flexors and
extensors, control most movements.

Figure 1. CPG model for the locomotor patterns of
animals with 2n legs (14).

Golubitsky et al (14; 15) propose a CPG model for
the locomotor rhythms of bipeds legs (see Figure 2).
This model is studied further by Pinto and Golubit-
sky in (28). Pinto et al (28) identify four primary
gaits: two-legged hop, two-legged jump, walk and run
and four secondary gaits: asymmetric hop, skip, one-
legged hop and gallop. Later, another secondary gait,
the hesitation-walk, is identified [Personal commu-
nication of Pinto in January 2009]. Primary and
secondary gait types are distinguished by the signals
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Figure 2. 4-cell CPG model for the rhythms of
bipedal locomotion (28). Cells 1 and 3 send
signals to two muscle groups in the left leg and
cells 2 and 4 send signals to the homologous
muscle groups in the right leg.

sent to the muscle groups. In primary gaits the mus-
cle groups receive the same signal, whereas in sec-
ondary gaits there are two signals sent to the muscle
groups. Buono and Golubitsky study the model for
quadruped locomotor patterns (2; 3). In this model,
Buono and Golubitsky identify six primary gaits:
pronk, pace, bound, trot, walk and jump, and twelve
secondary gaits: loping pace, running walk, rotary
gallop, loping trot, transverse gallop, canter, tertiary
gait, loping bound, rotary canter, double bound, dou-
ble canter and double loping bound. Pinto and Golu-
bitsky (28) also study a CPG model for arm/leg coor-
dination in bipeds. Their model is derived from the
CPG model for quadrupeds, by breaking the sym-
metry between front and hind legs. This translates
the morphological and functional differences between
arms and legs in bipeds. These authors identify the
patterns exhibited by legs and arms in biped gaits of
two-legged hop, run and gallop as symmetry-breaking
bifurcations of the quadrupeds gaits pronk, trot and
transverse jump, respectively.

In Robotics, CPG models are used to control robots’
movements (1; 22; 23; 31; 32; 33; 36). CPGs are
capable of independently produce rhythmic patterns
which makes them extraordinarily important in this
area. Other interesting properties of these CPG mod-
els are robustness against small perturbations, limit
cycle behaviour and smooth online modulation of
trajectories, by changes in parameter values of the
equations (24; 25; 30). Righetti and Ijspeert (32)
present a programmable CPG used to generate peri-
odic trajectories and apply it in the control of bipedal
locomotion of a simulated Hoap-2 robot.

The study of CPG models in Robotics has con-
tributed for significant advances in Physical Medicine
and Rehabilitation. Nandi et al (27) developed an
Adaptative Module Active Leg (AMAL), which con-
sists on an active prosthetic leg with initial gait
patterns. The AMAL is capable of adaptation, which
means that it changes the patterns recorded, adapt-
ing them to the amputee patterns. Studies in this way



can be useful to make the prosthetics more efficient
and less expensive than the actual.

In this paper we compute gait transition occuring in
the 4-cell CPG model in Figure 2. We consider as
the internal cells’ dynamics the Morris-Lecar equa-
tions (26; 34). We assume two types of coupling
between the cells: diffusive and synaptic. We find
that the secondary gait skip is obtained numerically
by bifurcation of the primary gaits walk and run, and
the secondary gait gallop is obtained by bifurcation
of the primary gait walk. This is in accordance with
analytical results.

1.1 Framework of the paper

In Section 2 we briefly review the work done by Pinto
and Golubitsky (28). We revisite the symmetry ar-
guments that allow us to enumerate the periodic so-
lutions predicted by the CPG model, identified with
primary and secondary gait types. Using bifurcation
theory, we list the bifurcations between these two
types of gaits. In Section 3 we present the numerical
simulations showing gait transitions. We consider the
dimensionless Morris-Lecar equations (26; 34) as cell
dynamics and we assume both diffuse and synaptic
couplings. In Section 4 we state the conclusions.

2. THE 4-CELL CPG MODEL

In this section we review the 4-cell CPG model for
biped rythms in Figure 2. In Subsection 2.1 we give
a brief introduction on coupled cell networks theory.
In Subsection 2.2 we present the general class of
ordinary differential equations (ODE’s) associated
with the 4-cell CPG model. In Subsection 2.3 we
discuss the symmetries of the model. In Subsection
2.4 we list the bipedal gaits predicted by the 4-
cell CPG model. The H/K theorem (12) is used to
enumerate all pairs of spatial-temporal and spatial
symmetries of each periodic solution predicted by the
coupled cells system (2.1). These periodic solutions
are then identified with bipedal gaits. In Subsection
2.5 we review arguments from bifurcation theory that
enable us to compute the bifurcations of the primary
gaits to secondary gaits.

2.1 Coupled cells networks

Recently, a new framework for the theory of cou-
pled cell networks has been developed. See Stew-
art, Golubitsky and Pivato (11; 35), Golubitsky,
Nicol and Stewart (10) and Golubitsky, Stewart and
Török (16). For a survey, overview and examples,
see Golubitsky and Stewart (13). Here, we use a
simplified version of the ‘multiarrow formalism’ of

Golubitsky, Stewart and Török (16), the ‘single ar-
row formalism’.

A network of n-coupled cells is represented by a
graph whose nodes are identified with cells (or dy-
namical systems) and whose arrows represent the
coupling between cells. Different nodes indicate dis-
tinct internal dynamics and different arrows repre-
sent different couplings between the cells.

Consider a n-coupled cell network with a finite num-
ber of cells C = {c1, ..., cn} and a finite number of
arrows. Each cell cj has an internal phase space,
which will be denoted by Pj . Cells represented by
the same nodes have identical internal phase space.
We consider the total phase space of the network
to be the direct product of internal phase spaces
of each cell, P =

∏n
i=1

Pi. On Pj we denote the
coordinates by xj and on P we denote by (x1, ..., xn).
At a time t we represent the state of the system by
(x1(t), ..., xn(t)), where xj(t) ∈ Pj is the state of the
cell cj at time t.

The group symmetry of a coupled cell system is a
subgroup of the permutation group Sn consisting
of all the permutations that preserve the coupling
between the cells.

In the graph of Figure 2, we have a network of
four cells. As all nodes are represented by the same
symbol, this means that all cells are considered to be
identical, i.e., all have the same internal dynamics.
The arrows are of three distinct types, representing
three different types of couplings between the cells.
This network has D2 symmetry. At time t, the state
of this system is given by (x1(t), x2(t), x3(t), x4(t)).

2.2 The equations

The derivation of the model assumes that each leg
receives signals from two cells (see Section 1). The
joint muscles of the left leg receive signals from cells
c1 and c3 and similarly the right leg joint muscles
receive the signals from cells c2 and c4. The existence
of four cells is justified by the fact that run and walk
are two distinct gaits. In both primary gaits walk
and run the left and right legs are half-period out
of phase. Nevertheless, in the run both flexor and
extensor muscles of the ankle joints are in phase,
whereas in the walk they are out of phase. This
is reflected in the rigidity of the ankle joint in the
run and in the ankle rotation in the walk. The
differences between these two gaits are translated by
their respective (H,K) symmetry pairs (Table 1).

The internal dynamics of each cell is modeled by
a system of ODE’s. The general class of ODE’s
associated with the 4-cell model is given by:













ẋ1 = F (x1, x2, x3, x4)
ẋ2 = F (x2, x1, x4, x3)
ẋ3 = F (x3, x4, x1, x2)
ẋ4 = F (x4, x3, x2, x1)

(2.1)

where xi ∈ R
k is the state of cell ci, i ∈ {1, 2, 3, 4},

k is the dimension of the internal dynamics for each
cell and F : (Rk)4 → R

k is a function that models
the internal dynamics of the four cells.

2.3 Symmetry of the model

In the graph of Figure 2 we can see three distinct
types of arrows, which represent three distinct types
of couplings between the cells. The arrows in bold
indicate us that the signals sent to cells c1 and c2 may
be interchanged, if the signals sent to cells c3 and
c4 also interchange. Mathematically, it corresponds
to the permutation (12)(34), which we label ρ. The
dashed arrows are associated to the permutation
(13)(24), which will be called τ . In this case, the
signals sent to cells c1 and c3 may be switched if the
signals sent to cells c2 and c4 are also switched. Fi-
nally, the dotted arrows indicate that the signals sent
to cells c1 and c4 can be interchanged if the signals
sent to cells c2 and c3 are also interchanged. This
last symmetry is associated with the permutation
ρτ =(14)(23). Note that (14)(23)=(12)(34)◦(13)(24).
Together with the Identity, these permutations form
the abelian group D2. We have D2 =< ρ, τ >. D2

is a symmetry group of order 4. This is the group of
symmetries associated with the model.

2.4 Bipedal Gaits

We use H/K theorem (12) to identify all spatial-
temporal and spatial symmetry associated with pe-
riodic solutions produced by the system (2.1). Let
K ⊂ H ⊂ D2 such that a given periodic solution
x(t) has the pair of symmetries (H,K). K is the
set of spatial symmetries k, i.e., kx(t) = x(t). H
is the set of spatial-temporal symmetries h, i.e.,
hx(t + θ) = x(t), where θ is the value of the phase-
shift. We distinguish two types of gaits: primary
and secondary. Primary gaits have spatial-temporal
symmetry group equal to D2 and the secondary gaits
have spatial-temporal symmetry group isomorphic to
Z2. In the primary gaits, the muscles groups receive
the same signal, whereas in secondary gaits there are
two different signals sent to these muscles.

Theorem 2.1. (28) Consider the coupled cell system
(2.1) where k ≥ 2. Let H⊃K be subgroups of D2.
Then there is a periodic solution x(t) to (2.1), for
some function F , if and only if H/K is cyclic.

Theorem 2.1 allows us to identify 11 pairs of symme-
tries (H,K) such that H/K is cyclic, given below:

(D2,D2), (D2, ρτ), (D2, ρ), (D2, τ), (ρτ, ρτ), (ρτ, Id),
(ρ, ρ), (ρ, Id), (τ, τ), (τ, Id), (Id, Id) where Id repre-
sents the Identity.

The periodic solutions with symmetry pairs (H,K)
and corresponding biped rythms are shown in Ta-
ble 1.

H K Periodic solution Gait

D2 D2 (x1(t), x1(t), x1(t), x1(t)) two-legged hop

D2 ρτ (x1(t), x1(t + 1

2
), x1(t + 1

2
), x1(t)) walk

D2 ρ (x1(t), x1(t), x1(t + 1

2
), x1(t + 1

2
)) two-legged jump

D2 τ (x1(t), x1(t + 1

2
), x1(t), x1(t + 1

2
)) run

ρτ ρτ (x1(t), x2(t), x2(t), x1(t)) asymmetric hop

ρτ Id (x1(t), x2(t), x2(t + 1

2
), x1(t + 1

2
)) hesitation-walk

ρ ρ (x1(t), x1(t), x2(t), x2(t))

ρ Id (x1(t), x1(t + 1

2
), x2(t), x2(t + 1

2
)) skip

τ τ (x1(t), x2(t), x1(t), x2(t)) one-legged hop

τ Id (x1(t), x2(t), x1(t + 1

2
), x2(t + 1

2
)) gallop

Id Id (x1(t), x2(t), x3(t), x4(t))

Table 1. Periodic solutions and corre-
sponding biped gaits predicted by the 4-
cell CPG model. Let X(t) = (x1(t), x2(t),
x3(t), x4(t)) be a periodic solution with
period normalized to 1. The symmetry τ
switches the signals sent to identical mus-
cle groups of the two legs; the symmetry
ρ switches the two signals sent to muscle

groups within each leg.

2.5 Bifurcation of gaits

In this subsection it is summarized, using arguments
of bifurcation theory, the classification of primary
and secondary gaits produced by the 4-cell CPG
model (12; 29). The primary gaits are bifurcations
of a D2-invariant equilibrium, X = (x, x, x, x). The
secondary gaits are symmetry breaking bifurcations
of the primary gaits.

Let L be the matrix of linearization of the system
2.1, around the equilibrium X. The system 2.1
is D2−equivariant, i.e., F (γ.x) = γ.F (x), for all
γ ∈ D2. This feature translates into good properties
in the matrix L.

To determine the bifurcations and stability of the pri-
mary gaits, it is necessary to compute the eigenvalues
of the matrix L in the equilibrium X. This task is
easier if the decomposition in isotypic components
of the subspace (Rk)4 is used. (Rk)4 can be decom-
posed in a direct sum of D2−irreducible subspaces,
in such a way that it is unique and invariant under
L.

Let Vσ be the sum of all irreducible subspaces isomor-
phic to a reprentation σ of D2, i.e., Vσ is the isotypic



component of (Rk)4 corresponding to σ. There are
four irreducible representations of D2. These repre-
sentations are described in Table 2.

σ Vσ

D2

{

(x, x, x, x) : x ∈ Rk
}

ρτ
{

(x,−x,−x, x) : x ∈ Rk
}

ρ
{

(x,−x, x,−x) : x ∈ Rk
}

τ
{

(x, x,−x,−x) : x ∈ Rk
}

Table 2. Isotypic components of (Rk)4 for
the 4-cell CPG model.

The isotypic decomposition (see (12), Theorem 2.12)
can be used to block diagonalize the matrix L. Thus,
the task of computing its eigenvalues is done with
little effort. We define the following matrices k × k:

A = δF
δx1

(X)

B = δF
δx2

(X)

C = δF
δx3

(X)

D = δF
δx4

(X)

It follows from Table 2 that the eigenvalues of L are
the eigenvalues of the following matrices:

LD2
= A + B + C + D

Lτ = A + B − C − D
Lρ = A − B + C − D
Lρτ = A − B − C + D

As D2 is an abelian group, Hopf bifurcations occur
for a unique pair of imaginary eigenvalues. Thus,
Hopf bifurcation points can be computed for each
matrix Lσ as well as the stability of its periodic orbits
can be calculated. Table 3 establishes the correspon-
dence between the periodic solutions obtained from
Lσ and the primary gaits.

Lσ Primary Gait

LD2
two-legged hop

Lτ run

Lρ two-legged jump

Lρτ walk

Table 3. Primary Gaits.

In order to classify secondary gaits we need to com-
pute symmetry breaking bifurcations of the primary
gaits. This is done using properties of the Poincaré
Maps. See more details in (29). In Table 4 we present
all the symmetry breaking bifurcations of primary
gaits predicted by the 4-cell CPG model. In the two-
legged hop there is an additional bifurcation to a
secondary gait, with (H,K) = (ρ, ρ) symmetry pair.
This solution is not yet identified with a bipedal gait.

Primary Gait Secondary Gaits

walk gallop

skip

run skip

hesitation-walk

two-legged jump hesitation-walk

gallop

two-legged hop asymmetric hop

one-legged hop

Table 4. Secondary gaits obtained by sym-
metry breaking bifurcations of primary

gaits, in the 4-cell CPG model.

3. NUMERICAL SIMULATIONS

In this section, we present numerical simulations
of the 4-cell CPG model for bipeds. We consider,
as internal dynamics of each cell, the dimensionless
Morris-Lecar (26; 34) equations, given by:

{

v̇ = −gCam(v)(v − 1) − gl(v − vl) − gkw(v − vk) + I ≡ f1(v, w)
ẇ = φτ(v)(n(v) − w) ≡ f2(v, w)

(3.2)
where m(v) = 1

2
(1 + tanh(v−v1

v2

)), n(v) = 1

2
(1 +

tanh(v−v3

v4

)), τ(v) = cosh(v−v3

2v4

). The parameter
values used in the simulations are v1 = 0.2, v2 = 0.4,
v3 = 0.3, v4 = 0.2, gl = 0.6, gk = 1.8, vl = −1.8,
vk = −0.8 and I = 1.

We consider two types of coupling: diffusive and
synaptic. Let h(xi, xj) be the function that repre-
sents the coupling between the cells ci and cj . The
coupling is called diffusive if h(xi, xj) = xi − xj and
synaptic if h(xi, xj) = xj .

The internal dynamics of the cell ci is given by:

˙xi1 = F (xi, xj , xk, xl) = f1(xi1, xi2) −
αah(xi1, xj1) − βbh(xi1, xk1) − γch(xi1, xl1)

˙xi2 = F (xi, xj , xk, xl) = f2(xi1, xi2)

where αa, βb and γc are the coupling constants
associated to the arrows directed from cells cj , ck

and cl to cell ci, respectively (see Figure 3).

Figure 3. Coupling constants.



The secondary gait skip is numerically obtained by
bifurcation of the primary gaits walk and run. Gallop
is a bifurcation of walk.

In the following tables we present the values of the
initial conditions, the coupling constants and bifur-
cation parameters used to obtain both primary and
secondary gaits. We also plot the periodic solutions.

Gait Init. Cond.

(0.180, 0.277)
walk (0.097, 0.159)

(0.097, 0.159)
(0.180, 0.277)

(0.004, 0.110)
run (0.195, 0.117)

(0.004, 0.110)
(0.195, 0.117)

(−0.046, 0.298)
two-legged jump (−0.046, 0.298)

(0.527, 0.253)
(0.527, 0.253)

Table 5. Values of the initial conditions of
the periodic solutions of the 4-cell CPG
model, obtained with the Morris-Lecar
equations and diffusive coupling in the
first component of the internal dynamics

of each cell, i = 1, 2.

Gait gCa φ αi βi γi

walk 1.500 0.200 -0.300 0.100 0.200

run 1.000 0.500 -0.300 0.200 -0.100

two-legged jump 2.000 0.200 0.100 -0.100 -0.200

Table 6. Values of the parameters and cou-
pling constants, of the periodic solutions of
the 4-cell CPG model, obtained with the
Morris-Lecar equations and diffusive cou-
pling in the first component of the internal

dynamics of each cell, i = 1, 2.

4. CONCLUSIONS

In this paper we study the CPG model for locomotor
patterns in bipeds, proposed by Golubitsky et al (14;
15) and studied by Pinto et al (28). The bipedal
rhythms predicted by the CPG model identified with
the gaits two-legged hop, walk, two-legged jump, run,
hesitation-walk, asymmetric hop, skip, one-legged hop
and gallop are reviewed.

Prim. gait Sec. gait Init. Cond. Bif. Param.

(0.176, 0.225)
walk gallop (0.176, 0.225) α1 = −0.281

(0.176, 0.176)
(176, 0.225)

(0.176, 0.225)
walk skip (0.176, 0.225) β1 = 0.119

(0.176, 0.225)
(0.176, 0.225)

(0.033, 0.118)
run skip (0.163, 0.093) γ2 = −0.228

(0.013, 0.122)
(0.139, 0.057)

Table 7. Values of the initial conditions
and bifurcation parameter associated to
the bifurcations of primary gaits walk and

run in Tables 5-6.

gallop

0 20 40 60 80 100 120 140
−0.5

0

0.5

x 1

0 20 40 60 80 100 120 140
−0.5

0

0.5

x 2
0 20 40 60 80 100 120 140

−0.5

0

0.5

x 3

0 20 40 60 80 100 120 140
−0.5

0

0.5
x 4

t

skip

0 20 40 60 80 100 120 140
−0.5

0

0.5

x 1

0 20 40 60 80 100 120 140
−0.5

0

0.5

x 2

0 20 40 60 80 100 120 140
−0.5

0

0.5

x 3

0 20 40 60 80 100 120 140
−0.5

0

0.5

x 4

t

Table 8. Periodic solutions of the 4-cell
CPG model identified with the secondary
gaits in Table 7, obtained by bifurcation

of the walk.

We numerically simulate the primary and secondary
gaits predicted by the model in Figure 2, using XPP
and MATLAB. The secondary gaits are obtained
from bifurcations of the primary gaits, when the
dimensionless Morris-Lecar (26; 34) equations are
considered as internal dynamics of each cell in both
diffusive and synaptic coupling. We show numerical
evidence of gait transition in bipeds.



skip

0 20 40 60 80 100 120 140
−0.5

0

0.5

x 1

0 20 40 60 80 100 120 140
−0.5

0

0.5

x 2

0 20 40 60 80 100 120 140
−0.5

0

0.5

x 3

0 20 40 60 80 100 120 140
−0.5

0

0.5

x 4

t

Table 9. Periodic solution of the 4-cell
CPG model identified with the secondary
gait in Table 7, obtained by bifurcation of

the run.

Gait Init. Cond.

(0.329, 0.413)
walk (−0.282, 0.125)

(−0.282, 0.125)
(0.329, 0.413)

(0.230, 0.453)
run (−0.260, 0.002)

(0.230, 0.453)
(−0.260, 0.002)

(0.315, 0.182)
two-legged jump (0.315, 0.182)

(−0.017, 0.177)
(−0.017, 0.177)

Table 10. Values of the initial conditions
of the periodic solutions of the 4-cell CPG
model, obtained with the Morris-Lecar
equations and synaptic coupling in the
first component of the internal dynamics

of each cell, i = 1, 2.

REFERENCES

[1] J. Buchli and A.J. Ijspeert. Self-organized
adaptive legged locomotion in a compliant
quadruped robot. Auton Robot 25 (2008) 331–
347.

[2] P.L. Buono and M. Golubitsky. Models of cen-
tral pattern generators for quadruped locomo-
tion I. Primary gaits. J. Mathematical Biology
42 (2001) 291–326.

[3] P.L. Buono. Models of central pattern gener-
ators for quadruped locomotion II. Secondary
gaits. J. Mathematical Biology 42 No 4 (2001)
327–346.

[4] R.L. Calabrese and E. Marder. Principles of
rhythmic motor pattern production. Physiolog-
ical Reviews 76 (1996) 687-717.

[5] G.E. Calancie, B. Needham-Shropshire, P. Ja-
cobs, K. Willer, G. Zych and B.A. Green. In-
voluntary stepping after chronic spinal injury.
Evidence for a central pattern generator for lo-

Gait gCa φ αi βi γi

walk 2.000 0.200 0.100 0.300 -0.100

run 2.000 0.300 0.400 0.000 0.400

two-legged jump 1.500 0.400 -0.100 0.300 0.200

Table 11. Values of the parameters and
coupling constants, of the periodic so-
lutions of the 4-cell CPG model, ob-
tained with the Morris-Lecar equations
and synaptic coupling in the first compo-
nent of the internal dynamics of each cell,

i = 1, 2.

Prim. gait Sec. gait Init. Cond. Bif. Param.

(0.241, 0.320)
walk gallop (0.156, 0.277) α1 = −0.014

(0.193, 0.296)
(0.258, 0.315)

(0.100, 0.270)
walk skip (0.287, 0.264) γ1 = 0.160

(0.332, 0.289)
(0.088, 0.293)

(0.115, 0.083)
run skip (0.202, 0.380) γ1 = 0.199

(−0.330, 0.020)
(0.214, 0.446)

Table 12. Values of the initial conditions
and bifurcation parameter associated to
the bifurcations of primary gaits walk and

run in Tables 10-11.

comotion in man. Brain 117 Pt 5 (1994) 1143-
1159.

[6] A.H. Cohen, P.J. Holmes and R.H. Rand. The
nature of the coupling between segmental oscil-
lators of the lamprey spinal generator for loco-
motion: a mathematical model. J. Mathematical
Biology 13 No 3 (1982) 345–369.

[7] J.J. Collins and I. Stewart. Coupled Nonlinear
Oscillators and the Symmetries of Animal Gaits.
J. Nonlinear Science 42 No 3 (1993) 349–392.

[8] M.R. Dimitijevic, Y. Gerasimenko and M.M.
Pinter. Evidence for a Spinal Central Pattern
Generator in Humans. Annals of New York
Acad. Sci. 800 (1998) 360-376.

[9] J. Duysens and H.W.A.A. Van de Crommert.
Neural control of locomotion: Part 1: The cen-
tral pattern generator from cats to humans. Gait
and Posture 7 (1998) 131-141.



gallop

0 20 40 60 80 100 120 140

0.2

0.25

x 1

0 20 40 60 80 100 120 140
0

0.2

0.4

x 2

0 20 40 60 80 100 120 140

0.2

0.25

x 3

0 20 40 60 80 100 120 140
0

0.2

0.4

x 4

t

skip

0 20 40 60 80 100 120 140
0

0.2

0.4

x 1

0 20 40 60 80 100 120 140
0

0.2

0.4

x 2

0 20 40 60 80 100 120 140
0

0.2

0.4

x 3

0 20 40 60 80 100 120 140
0

0.2

0.4

x 4

t

Table 13. Periodic solutions of the 4-cell
CPG model identified with the secondary
gaits in Table 12, obtained by bifurcation

of the walk.

skip

0 20 40 60 80 100 120 140
−0.5

0

0.5

x 1

0 20 40 60 80 100 120 140
−0.5

0

0.5

x 2

0 20 40 60 80 100 120 140
−1

0

1

x 3

0 20 40 60 80 100 120 140
−1

0

1

x 4

t

Table 14. Periodic solution of the 4-cell
CPG model identified with the secondary
gait in Table 12, obtained by bifurcation

of the run.

[10] M. Golubitsky, M. Nicol and I. Stewart. Some
curious phenomena in coupled cell systems. J.
Nonlinear Science 14 (2004) 207-36.

[11] M. Golubitsky, M. Pivato and I. Stewart. Inte-
rior symmetry and local bifurcation in coupled
cell networks. Dynamical Systems 19 (2004)
389-407.

[12] M. Golubitsky and I. Stewart. The Symme-
try Perspective. Progress in Mathematics 200,
Birkhauser, Basel, 2002.

[13] M. Golubitsky and I. Stewart. Nonlinear dy-
namics of networks: the groupoid formalism.
Bulletin of the American Mathematical Society
43 (2006) 305-64.

[14] M. Golubitsky, I. Stewart, P.L. Buono and J.J.
Collins. A modular network for legged locomo-
tion. Physica D 115 (1998) 56–72.

[15] M. Golubitsky, I. Stewart, P.L. Buono and J.J.
Collins. Symmetry in locomotor central pattern
generators and animal gaits. Nature 401 (1999)
693–695.

[16] M. Golubitsky, I. Stewart and A. Török. Pat-
terns of synchrony in coupled cell networks with
multiple arrows. SIAM J Appl Dyn Syst 4 No 1
(2005) 78-100.

[17] S. Grillner, J.T. Buchanan, P. Walker and L.
Brodin. Neural control of locomotion in lower
vertebrates. Neural Control of Rhythmic Move-
ments in Vertebrates. John Wiley & Sons (1988)
1–40.

[18] G.W. Hiebert, P.J. Whelan, A. Prochazka and
K.G. Pearson. Contribution of hind limb flexor
muscle afferents to the timing of phase transi-
tions in the cat step cycle. J. Neurophysiology
75 Issue 3 (1996) 1126–1137.

[19] N. Kopell and G.B. Ermentrout. Symmetry and
phaselocking in chains of weakly coupled oscil-
lators. Communications on Pure and Applied
Mathematics 39 (1986) 623–660.

[20] N. Kopell and G.B. Ermentrout. Coupled os-
cillators and the design of central pattern gen-
erators. Mathematical Biosciences. An Interna-
tional Journal 89 (1988) 14–23.

[21] N. Kopell and G.B. Ermentrout. Phase transi-
tions and other phenomena in chains of coupled
oscillators. SIAM Journal on Applied Mathe-
matics 50 (1990) 1014–1052.

[22] G.L. Liu, M.K. Habib, K. Watanabe and K.
Izumi. Central pattern generators based on Mat-
suoka oscillators for the locomotion of biped
robots. Artif Life Rootics 12 (2008) 264–269.

[23] V.A. Makarov, E.D. Rio, M.G. Velarde and
W. Ebeling. Central Pattern Generator Incor-
porating the Actuator Dynamics for a Hexapod
Robot. World Academy of Science, Engineering
and Technology 15 (October 2006)

[24] E. Marder and D. Bucher. Central pattern gen-
erators and the control of rhythmic movements.
Current Biology 11 Issue 23 (2001) 986–996.

[25] V. Matos, C.P. Santos and C.M.A. Pinto. A
Brainstem-like Modulation Approach for Gait
Transition in a Quadruped Robot. Proceedings
of The 2009 IEEE/RSJ International Confer-
ence on Intelligent RObots and Systems IROS
2009, St Louis, MO, USA (October 2009).



[26] C. Morris and H. Lecar. Voltage Oscillations in
the Barnacle Giant Muscle Fiber. Biophysical
Journal 35 (1981) 193-213.

[27] G.C. Nandi, A.J. Ijspeert, P. Chakraborty and
A. Nandi. Development of Adaptive Modular
Active Leg (AMAL) using bipedal robotics tech-
nology. Robotics and Autonomous Systems 57

(2009) 603–616.
[28] C.M.A. Pinto and M. Golubitsky. Central pat-

tern generators for bipedal locomotion. J. Math-
ematical Biology 53 (2006) 474–489.

[29] C.M.A. Pinto. Coupled Oscillators. (PhD The-
sis), University of Porto (January 2004).

[30] L. Righetti, J. Buchli and A.J. Ijspeert. Dy-
namic Hebbian learning in adaptive frequency
oscillators. Physica D 216 (2006) 269–281.

[31] L. Righetti and A.J. Ijspeert. Design method-
ologies for central pattern generators: an appli-
cation to crawling humanoids. (part of RobotCub
project).

[32] L. Righetti and A.J. Ijspeert. Programmable
Central Pattern Generators: an application to
biped locomotion control. International Confer-
ence on Robotics and Automation (May 2006).

[33] L. Righetti and A.J. Ijspeert. Pattern gener-
ators with sensory feedback for the control
of quadruped locomotion. IEEE International
Conference on Robotics and Automation ICRA
No 19–23 (2008) 819–824.

[34] J. Rinzel and G.B. Ermentrout. Analysis of
neural excitability and oscillations. Methods in
Neuronal Modeling: From Synapses to Networks
(C. Koch and I. Segev, eds.), MIT Press, Cam-
bridge, MA (1989).

[35] I. Stewart, M. Golubitsky and M. Pivato. Sym-
metry groupoids and patterns of synchrony in
coupled cell networks. SIAM J Appl Dyn Syst 2

No 4 (2003) 609-46.
[36] G. Taga, Y. Yamaguchi and H. Shimizu. Self-

organized control of bipedal locomotion by neu-
ral oscillators in unpredictable environment.
Biol. Cybern. 65 (1991) 147–169.


