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Abstract: We present the calculus of the Lamb shift by using an equivalent expression for the Coulomb interaction energy, on

the form aiC/ R, where « is the fine structure constant. This expression was found by using a new Hamiltonian of
interaction between fermions. The obtained results are in a good agreement with experimental data. The calculus was fulfilled

in both three dimensional and two dimensional spaces.
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1. INTRODUCTION

The Lamb shift ( Lamb and Retherford, 1947) is a small
difference in energy between two energy levels 28, and Py,
of the hydrogen atom by an amount now known to be E/h =
1057.864 MHz. This result is in contradiction with the Dirac
and Schrodinger theory which shown that the states with the
same N and j quantum numbers but different | quantum
numbers ought to be degenerate. The effect is explained by
the theory of quantum electrodynamics (Bethe, 1947; Welton,
1948; Greiner and Reinhardt, 1994), in which the
electromagnetic interaction itself is quantized. It is assumed
that the ground state of the electromagnetic field is not zero,
but rather the field undergoes “vacuum fluctuations” that
interact with the electron. The contributions to this effect
come from the vacuum polarization, electron mass
renormalization and anomalous magnetic moment. Often the
“vacuum” is a “refuge” for speculations in science.

By using a Hamiltonian of interaction between fermions
based on the coupling through flux lines
( Dolocan et al, 2005) we have found an equivalent
expression for the Coulomb energy of interaction ( Dolocan
et al,2010), on the form aiC/ R, where « is the fine
structure constant.

In the interaction picture the effective Hamiltonian is given
by (Dolocan et al, 2005; 2010)
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The expectation value of the energy of H ,e If (1) is
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and the expectation value of the energy of the Hamiltonian
H]2 (1) is
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D is a coupling constant, (,(’ are the wave vectors

associated with the bosons of the connecting field, (], is the
wave vector associated with the oscillations of the electron,
and K,K' are the wave vectors of the electrons. @y, W, are

the classical oscillation frequencies, a; and a, are the
boson creation and annihilation operators, respectively, C,
and C,  are the creation and annihilation operators for
electrons, K is the wave vector of an electron, Ng is the
occupation number for bosons and N, is the occupation

number for fermions. We assume Ny, N, = 0,n,, N 4= 1.

If instead of the Frohlich fraction
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then for p, =0 (' mass less interacting field), (2) becomes
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Now we apply this equation to a system of two electrons
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at R, and R, acting on the vacuum of the less mass boson
field. In this case
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We have considered N = 1, Zl =1 and Q=47R°/3.
K

The upper limit of the integrals over (,(, appear from the

requirement
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The interaction energy (2a) becomes
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The factor 2 appears because we have considered the two
nearest neighbours of an electron. The interaction energy
between two electrons is

E =« E (6)

R
where @ =1/137 is the fine structure constant. This is an
equivalent expression for the Coulomb’s law. Expression (6)
is obtained from (2a), containing the fraction (5b), which is
valid for the interaction between the like charges acting in a
mass less boson field. In this case the flux lines of the two
particles do not interfere, the two particles absorb bosons
from the ambient space, and move apart to one another. In the
case where the two particles have opposite charges, then in a
mass less boson field, the interaction energy is given by (2a)
where the fraction (5b) is substituted by fraction (5a) and the
interaction energy (6) becomes negative (in front off the term
from the right hand side is a negative sign). The explanation
for this is as follows. Frohlich obtained the fraction (5a) by
dividing fraction (5b) into two parts
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one part for absorption and the other for emission of a boson.
When the two charges have opposite sign, there is a
continuity of the field lines from one particle to the other, one
particle absorbs and the other emits a boson, so that an
attraction is assured. Also, an attraction may

be assured between the like charges, when the connecting
field is a massive field; likewise, in this case the interaction
energy is given by (2).



When a particle has a charge Q, thatis Q/€ electronic
charges, the term from the right hand side of Eq. (6) is

multiplied by Q,Q, /€7, because in this case we must define

2
|‘P| = Q/e (the number of electronic charges per particle).

2. LAMB SHIFT IN THE THREE DIMENSIONAL SPACE.

From equations (3) and (4) one obtains
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We recognize that there is also a shift for free states. For free
electrons (57a) becomes
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One gets the physical energy shift by substracting expression
(7b) from (7a). The expression renormalized in this way is
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th K

=—5= [da. f daX (e, ©)

mc/h

The expectation values of the energy g, = E are

determined from the Schrédinger equations
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‘Pv is the nonrelativistic wave function in the hydrogen like

atom. (5[‘ )2 =g’ , where §? is the mean square value of §; (
Dolocan, 2005;2010)
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Even in the lowest state (Ng, = 0) the oscillator has a finite
amplitude with a finite probability. In this case,

2= (1/ qug). By using that
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and by using Eqs. (6) may be written
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A factor 2 appears because of the two values of the electron
spin. For p orbitals, the nonrelativistic wave function
vanishes at the origin, so there is no energy shift. But for s
orbitals there is some finite value at the origin
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where we have denoted R = a,, the Bohr radius. By
substituting (12) in (9) we have
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For hydrogen atom, Z = 1, this shift is about 6.42x10° J
which correspond to a frequency of 970 MHz. Further we
consider the contribution to the Lamb shift of the interaction
terms from the fine-structure Hamiltonian in according to
Dirac theory ( Bransden and Joachain, 1983). The first term
of interaction is the usual spin-orbit coupling
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and the second term of interaction is the Darwin term due to
the nonlocalized interaction between the electron and the
field
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In the case of the spin-orbit coupling
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By substituting (16) in (9) one obtains
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By using the radial wave function of the electron in the
hydrogen atom
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one obtains

and 5Eié =1.2x107*J, which correspond to a frequency
of ~0.18 MHz. In the above expression A; =h/MCis the

Compton wave length. The spin-orbit coupling contribution
is zero for s electrons. Next we consider the Darwin term
(15). We write
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By using the radial wave function of the electron in the
hydrogen atom
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and azztz)arwin
considered Z = 1. The contribution of the Darwin term is of
the order of 60.2 MHz. By adding the Darwin contribution to
the contribution (13) one obtains v =1030.2 MHz , which is
close to the experimental value of the Lamb shift.

=2x107*°J. In the last equations we have

3.THE FINE STRUCTURE CONSTANT IN THE TWO
DIMENSIONAL SPACE.

In the two dimensional space may be written
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where J,(x) is the Bessel function of the first kind,

R,, =R, =R, . Further,
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The interaction energy in the two dimensional space becomes
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where the fine structure constant in the two dimensional
space is

a,, =0.053=7.26c (23a)

where « is the fine structure constant in the three
dimensional space. It appears that in the two dimensional
space the Coulomb interaction ia approximately 7 times
stronger than in the three dimensional space. Here

1/ g=1/M,+1/m, where g is the reduced mass of the
proton and electron in the hydrogen atom. We consider

M = M, the electron mass. The electron radius in the
hydrogen atom in the two dimensional space is
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where n is the principal quantum number. The Bohr radius
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dimensional space. The increasing of binding energy of the
electron in the hydrogen atom is
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For the ground state, the binding energy in the two
dimensional space is 200 times larger than that in the three
dimensional space. It results that if should be a two
dimensional space, in this space the matter should be more
condensate than in the three dimensional space. We specify
that the two dimensional hydrogen atom was studied in the
past by many authors( Zaslow and Zandler, 1967; Yang et al,
1991; Guo et al, 1991; Taut, 1995).
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4. LAMB SHIFT IN THE TWO DIMENSIONAL SPACE.

In the two dimensional space the expression (8) for the
Lamb shift becomes
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We write
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For the 3D case, since V?V (r) = —472'5(I’), OE is nonzero
only for the s electron. However this is no longer true for the

2D hydrogen atom, this term is nonzero for all the electrons.
By using that
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For 2s level we have
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which correspond to a frequency of 300 MHz. For 2p level
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and 55225 =5.28x107J which corresponds to a

frequency of ~800 MHz.
For the spin-orbit coupling we have
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which corresponds to a frequency of 50 MHz.
For the Darwin term we have
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which corresponds to a frequency of 38 MHz. The total shift
in the two dimensional space is of the order of 500 MHz.
This value of the shift is some smaller than that in the three
dimensional space.

5. CONCLUSIONS.

We have presented a theory of the Lamb shift without
taken into account the electron charge. This appears as a
natural result of the equivalent expression for the Coulomb’s
interaction energy, aiC/ R, just derived from our
Hamiltonian of interaction. This gives rise to the questions:
may be the electron taken off the charge, or the electron is an
indestructible charge? What is this the charge? We specify
that in 1947 Hans Bethe was the first to explain the Lamb
shift in the hydrogen spectrum, and be thus laid the
foundation for the modern development of quantum
electrodynamics. Neither the mass nor the charge of the
electron or any other charged particle can actually calculated
in QED- they have to be assumed. In our theory it is not
necessary to assume a priori the charge of the electron. Also,



we have found that in the two dimensional space, the matter
is more condensate than in the three dimensional space. In
another paper, we extend these results to the interaction
between nucleons via mass less bosons and massive particles
( Dolocan et al, to be published).
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