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Abstract:  In this paper, fuzzy logic approach is employed for predicting projects costs. Expectation 
maximization clustering algorithm was used, in order to optimize the number of clusters which is 
important in model simulation. The clusters given by the expectation maximization algorithm has lead to 
the development of fuzzy rules.  The results indicate that the   use of fuzzy rules to predicting projects 
costs has reduced the uncertainty of estimate, which in turn the accuracy was improved. 
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1. INTRODUCTION 

The concept of fuzzy logic is derived from the theory of 
fuzzy sets. The theory of fuzzy sets was developed by Zadeh 
(1965). It is ranked among the methods of artificial 
intelligence. The method of fuzzy logic provides a way for 
cope with problems arising from unexpected situations. It is a 
means for solving hard problems, by determining a 
mathematical model that describes the   system behavior, 
known as an unsupervised learning method. 
The proposed model consists of two parts: Firstly. 
Optimization is the process to determine the number of 
clusters from data input-output, which respectively serves for 
subsequent use. The second part involves the extraction of 
fuzzy rules. 
 
In this paper, we evaluate the use of the expectation 
maximization clustering algorithm in modeling and 
estimating projects costs. 
 
 
1.1 The fuzzy clustering algorithm 
 
The Takagi-Sugeno was the first model developed in 1985. 
This model can effectively represent complex nonlinear 
systems using fuzzy sets. The clustering technique is an 
essential method in data analysis and pattern recognition. 
Fuzzy clustering allows natural grouping of data in a large 
data set and provides a basis for constructing rule-based 
fuzzy model.  It is a partitioning method of data into subsets 
or groups based on similarities between the data (Takagi et 

al., 1985). The representation of fuzzy rules for the Takagi-
Sugeno model takes  the form : 
 
Ri:    If      x1  is A i,1  and …..and x p   is  Ai,p                     (1)              

Then  yI = ai0  + ai1x1  +….aipxp 
 
where, Ri is the rule number,  xj  is the j-th input variable, Aij  
is the fuzzy set of the j-th input variable in the i-th rule, yi are 
output of the i-th fuzzy rule.  
 
1.2 The fuzzy c-means algorithm 
 
Fuzzy C-means algorithm (FCM) is a fuzzy clustering 
technique which is different from   C-means that uses hard 
partitioning. The fuzzy c-means uses fuzzy partitioning in 
which a data point can belong to all clusters with different 
grades between 0 and 1. The FCM is an iterative algorithm 
that aims to find cluster centers that minimize the objective 
function. 
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where V = [v1, v2,…, vc],  vi are the clusters centers to be 
determined. φ = {µik} is a fuzzy partition matrix; (µik) is a 

membership degree between the ith cluster and kth data which 
is subject to conditions (3).    
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1.3 The expectation maximization algorithm 
      
The EM algorithm was proposed by Abonyi (2003). It is an 
extension of the algorithm of Gath and Geva (1989), with a 
covariance matrix has nonzero diagonal elements, which 
creates an error in the projection of these elements. The 
methodology of the used algorithm is described as follow: 

The partition matrix is expressed by: 
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 The standard deviation of the Gaussian membership 
functions is: 
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The local model parameters are extracted as 
follows: 
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where Φ  is the weights matrix having the membership 
degrees defined by: 
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The extended matrix eX   is given by; [ ]1XX e =  

And the prior probability is expressed by: 
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The weights on rules are expressed as follow:   
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with a distance norm given by the following expression: 
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where ( )ikif θ,x  is  the model consequents. 

The proposed algorithm is summarized as follow 

 
Let Z={ zk1, zk2,…, zkn }

T 
Select the number of clusters c>1  

Select the weithning exponent (m =2) 
 and the termination criterion (ε>0) 

Initialize the partition matrix such as (3) 
Start 

1: Compute the clusters centers using (5) 
2: Compute fuzzy covariance matrix by (6) 

3: Compute (7, 8, and 9) 
4: Compute the distances using (10) 

5: Update the partition matrix using (4) 
If stopping criterion |U(l)- U(l-1)| ≤ 

ε
    satisfied then stop 

Otherwise l ← l+1 and go to step 2 
End 

 

     2. VALIDATION 

 2.1 Indices 

It is important to determine the number of clusters for use in 
simulation. For this, different indices for validation have been 
proposed by Bezdek (1975)   in data clustering. This can be 
done by the partition coefficient (PC) and the partition 
entropy (PE). 

The partition coefficient Measure the ammount of 
overlapping between clusters. 
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The partition entropy measure the fuzzyness of the cluster  
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where   PC(c) ∈  [1/c, 1], PE(c)   [ ]alog0,∈       , with an 

increase of c, the values of PC and PE are 



 
 

     

 

3 

decreased/increased, respectively.  The above mentioned 
cluster validity indices are sensitive to fuzzy coefficient m.  
When 1→m , the indices give the same value for all c. 

When ∞→m , both PC and PE exhibit significant knee at 

c=2.  The number corresponding to a significant knee is 
selected as the optimal number of clusters. 

 
2.2 The performance error 
 
To evaluate the performance of the Fuzzy models, we use 
the following criteria proposed by Bezdek.  (1975). they are 
used for evaluating the output of the model. 
 
The root mean squared error is expressed as follow:                              
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where y is the output of the process and y’ is the output of the 
model. 
 
The variance accounted-for   is expressed by: 
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Where n is the number of projects and i is the project 
number (i = 1… n), and y’ is the actual output 
 
 
3. APPLICATION OF FUZZY LOGIC TO COST 
ESTIMATION 
 
The production of an accurate estimate for estimating 
projects costs is a challenging task for the estimator, at the 
early stage of a project. 
In an attempt to overcome the problem, a soft computing 
method has been used to solve the problem of uncertainties in 
estimating, and construct accurate model for predicting the 
final cost of a project.   
 
3.1 The model development  
 
The present model has been developed in three phases. 
Firstly: It consists of the determination of the number of 
cluster.  Secondly: The learning phase and finally the testing 
phase.  
 
3.2 The data  
 
Data used, comes from a research report (Bouabaz et al. 
2008). A wide range of project contracts made on cost-
significance work packages were used for modelling 
purposes 
 
3.3 The clustering 
 

The clustering consists of the selection of the number of 
clusters, which depends on the partition coefficient and the 
classification entropy.  
The clustering map by the expectation maximisation 
algorithm is shown in figure 1. 
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Fig 1.  The clustering map using expectation maximisation  
             algorithm.   
 
As seen from figures 1 and 2   we can deduce that the 
clustering number is equal to2 clusters. 
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Fig  2.  The results for PC and PE. 

       
Table 1 gives the values for PC and PE at optimization 
stage. 
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            Table 1.  Summarize the clustering results. 
 
Indices                                 Clusters 

 
          2       3         4        5        6        7        8        9         10 
 
PC= 0.869   0.837    0.832   0.839    0.818    0.781    0.783    0.774   0.719 
 
CE= 0.224   0.284    0.328   0.327    0.385    0.436    0.449    0.475   0.611    
 
                           
                     
             Table  2. The Values for the clusters centres 

  
                    rules              y(k-1)                 u 

 
R1          1.61 × 10-1      1.69 × 10-1 
R2          4.20 × 10-1      4.28 × 10-1 

 
 
 
3.4 The model simulation 
 
The proposed model was developed utilizing a set of 
projects. Historical data employed comes from a research 
report done in UK. The developed model was generated 
from 68 data samples using Matlab toolbox (Abonyi J. 2003, 
Abonyi et al. 2005) in a micro-computer.  It has 1 input and 
1 output.  The training was stopped when   the variance 
accounted-for (VAF) reached the maximum percentage 
value of 99.5304 in an elapsed time of 1.335000 seconds.  
The termination tolerance of the clustering algorithm was 
0.01.  The training error (RMSE)   is 0.0107. The simulation 
model at learning phase is shown graphically on figure 3. 
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            Fig 3.    Simulated model at the learning phase. 

The membership functions of the actual data versus simulated 
data obtained by the projection of the clusters by the 
expectation maximization algorithm are shown graphically. 
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       Fig  4.  Show the membership functions of the model            

 

 

Table 3. Fuzzy rules obtained by expectation maximisation 
algorithm 

 

 
Rule 1: 

If  y(k-1) is A11 and u is A12  Then 
y(k) =4.50.10-2 y(k-1)+9.23.10-1u+1.04.10-3 

 
 
Rule 2: 

If  y(k-1) is A21  and u is A22  Then 
y(k) = 5.27.10-3 y(k-1)+1.04.100u+270.10-2 

 

 

 

3.5 The testing model 

A testing phase was investigated on the adopted rules in order 
to determine the accuracy of the model. Some flattering 
results are shown in table 4. 

 

                              



 
 

     

 

5 

 Table 4. Results of testing rules 

 

Project       Value of        Simulated            Actual          Cpe 
N°               cswp’s          fuzzy model       bill value 
                      (£)                  (£)                       (£)            (%) 
 
  
 1                    21 402            26 662                  26 753           0.000 
 2                    47 158             57 931                 57 775         - 0.267 
 3                    37 520             47 145                 47 451           0.650 
 4                    29 668             37 086                 37 794           1.909 
 5                    44 500             54 884                 55 152           0.489 
 6                    39 400             50 407                 49 663          -1.475 
 7                    57 898             72 373                 71 702          -0.925 
 8                    91 023           112 374               115 301           2.605 
 9                    62 890             80 481                 78 833         - 2.046 
10                 110 264           137 241               140 700           2.520 
 
Mean error                                                                               0.345 
Standard deviation                                                                   1.617 

 

Figure 5 shows the plot of the results given by the obtained 
rules at testing phase. 
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    Fig 5. Plot of simulated values on actual at testing phase 

 

4. Conclusion 

As a conclusion fuzzy clustering approach seems to reveal 
promising results in modelling, and forecasting projects costs. 
A modified fuzzy clustering algorithm based on the 
expectation maximization algorithm was used to construct a 
fuzzy model.  
The simulation results on projects contracts illustrate the 
accuracy of the model 
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