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Abstract: We present results of experiments on the behavior of reaction fronts in the presence of vortex-
dominated flows.  The flow is either a single vortex or a chain of vortices in an annular configuration, 
and the reaction is the excitable Belousov-Zhabotinsky chemical reaction.  If the vortex chain oscillates 
periodically in the lateral direction, the reaction front often mode-locks to the oscillations, propagating an 
integer number of wavelengths of the flow (two vortices) in an integer number of drive periods. In the 
presence of a uniform “wind”, the front often freezes, remaining pinned to the leading vortex and neither 
propagating forward against the wind nor being blown backward by it.  Studies with an individual vortex 
verify the ability of a moving vortex to pin and drag a reaction front.  We use this pinning behavior to 
explain the mode-locking for the oscillating case. 
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1. INTRODUCTION 

There is significant interest in the behaviour of reaction fronts 
in a fluid system (Abel, 2001; Tel, 2005), a problem with 
applications in many fields of science and engineering 
(Karolyi, 1999; Karolyi, 2000; Neufeld, 2001; Neufeld, 
2003).  In the reaction-diffusion (RD) limit with no fluid 
flows, the speed at which a reaction front propagates was 
predicted in the 1930’s to be given by the Fisher-
Kolmogorov-Petrovskii-Piskunov (FKPP) result Dkv 2=  
where D and k are the molecular diffusivity and reaction rates 
of the relevant species involved in the reaction (Fisher, 1937; 
Kolmogorov, 1937).  The effects of fluid flows on front 
behaviour, however, is still not understood, even for well-
ordered, laminar flows.  In many cases, transport in a fluid 
flow is diffusive in nature with the variance of a distribution 
that grows as < σ2> = 2D*t where D* is the enhanced 
diffusivity.  It is natural in these cases to assume that the 
FKPP prediction still holds but with D replaced by D*.  In 
fact, this result seems almost so obvious that many 
investigators overlook this problem and instead concentrate 
on extensions of FKPP theory to cases where the transport is 
superdiffusive with <σ2> ~ tγ with γ > 1. 

In this paper, we present experiments that demonstrate that 
FKPP theory does not adequately describe front propagation 
in laminar flows, even in situations where the transport is 
diffusive.  Instead, front propagation is dominated by the 
presence of coherent vortices in the flow that tend to pin and 
drag fronts.   

In Section 2, we describe the experimental apparatus and 
flow, along with the chemistry used to produce the fronts.  In 

Section 3, we describe experiments that show mode-locking 
in front propagation with periodic time dependence.  Pinning 
of reaction fronts by vortices is described in Section 4.  We 
discuss areas for future study in Section 5. 

2. EXPERIMENTAL TECHNIQUES 

The flow is either a single vortex or a a chain of 20 vortices 
in an annular configuration (Nugent, 2004; Paoletti, 2005a, 
Paoletti, 2005b; Paoletti, 2006; Schwartz, 2008).  The flow is 
driven using a magnetohydrodynamic technique, as shown in 
Figure 1.  An electrical current passes radially through a thin 

(2 mm) layer of an electrolytic solution, interacting with a 
varying magnetic field produced by two rings of alternating 
magnets below the fluid layer.  The result is a flow with 20 
vortices within the annulus.  The magnet assembly is 
mounted on a motor; the magnet assembly and the magnets 
rotate with the motor, causing lateral motion of the vortices 
within the flow.  If the motor oscillates, then the vortices 

 
 
 
 
 

Figure 1. Apparatus used to generate annular chain of 
vortices.  (a) Exploded view of magnetohydrodynamic, 
showing radial current, magnets below the fluid layer, and 
vortex chain within the annulus.  (b) Side view of 
apparatus. 



 
 

     

 

 
Figure 2. Sequences showing (1,1) mode-locking where 
the front propagates 1 wavelength (2 vortex widths) each 
drive period.  The vortex chain oscillates periodically with 
no drift (vd = 0) .  (a) Experimental sequence; each image 
separated in time by one period.  (b) Numerical 
simulation. 

oscillate.  If the motor moves with a constant angular 
velocity, then the vortices drift around the annulus with a 
constant speed. A combination of oscillation and drift is also 
used.  Throughout this paper, the magnitude of the 
oscillations is denoted by the maximum lateral oscillation 
speed vo, and the drift speed is denoted by vd.  Previous 
studies (Paoletti, 2006) have shown that long range transport 
is typically diffusive if vo > vd and is typically superdiffusive 
if vo < vd.  With this experimental approach, therefore, we are 
able to switch between diffusive and superdiffusive transport. 

The working fluid is composed of the chemicals used for the 
excitable Belousov-Zhabotinsky chemical reaction (Paoletti, 
2005a,b; Schwartz, 2008).  We use the Ruthenium-catalyzed 
BZ reaction, which is photosensitive.  An LCD projector 
shines a template image on the apparatus, with red light over 
the annular region and blue-green light everywhere else.  The 
reaction is inhibited by the blue-green light but not the red 
light.  This approach prevents spurious reaction fronts from 
entering the region of interest.  The reaction itself is triggered 
by inserting a silver wire into the flow.  This causes the 
Ruthenium indicator (which is initially orange) to oxidize, 
turning green.  The oxidized Ruthenium triggers the 
surrounding regions, resulting in a reaction front that 
propagates outward from the trigger source.  When the radial 
current is applied, vortices form in the annulus and the 
reaction is also advected with the fluid flow.  The resulting 
advection-reaction-diffusion process is imaged from above 
with a high-resolution CCD camera with an orange filter.  All 
of the images shown in this paper are “de-curled” – digitally 
cut and unwrapped so that they can be displayed as horizontal 
strips. 

3. MODE-LOCKING 

If the vortex chain oscillates periodically in the lateral 
direction (with no drift:  vd = 0), the front often mode-locks 
to the external forcing, travelling an integer number N of 
wavelengths of the flow (where one wavelength is two vortex 
widths) in an integer number M of drive periods (Cencini, 
2003; Paoletti, 2005a,b).  An example of mode-locking with 
combination (N,M) = (1,1) is shown in Figure 2, along with a 
simulation (Paoletti, 2005b) of similar (1,1) mode-locking.  
The front can be seen to move precisely two vortices (one 
wavelength) each drive period, consistent with the definition 
of mode-locking for front propagation. 

Quantitatively, mode-locking is associated with a front speed 
v = Nλ/MT = (N/M)λf.  We measure the front velocities to 
determine if the front is mode-locked and, if so, what 
combination of N and M describes the locking.  Figure 3(a) 
shows the experimental front velocities for the pure 
oscillatory case along with the predictions based on mode-
locking.  A parameter-space diagram (Figure 3(b)) shows 
regions of non-dimensional amplitude and frequency of 
oscillation for which there is (1,1) and (1,2) mode-locking.  
(There is an overlap region as well, where the front alternates 
speed between the two (1,1) and (1,2) speeds.) 

These results are clearly inconsistent with an FKPP approach.  
According to the FKPP prediction, the front velocity should 
grow with effective diffusivity D*.  Some of the lower-
frequency cases have front velocities that are smaller than the 
case with no oscillations at all (Paoletti, 2005b), despite the 
fact that any oscillating case (i.e., vo ≠ 0) has an effective 
diffusivity significantly higher than the non-oscillating case.  
Furthermore, the dramatic changes in propagation velocity 
when the front switches from one mode-locked regime to 
another (or becomes unlocked) cannot be explained by the 
FKPP theory. 

4.  PINNING OF REACTION FRONTS 

If the vortex chain drifts with a constant angular velocity (vo 
= 0, vd ≠ 0), there is a strong tendency for the front to pin to 
the vortex chain (Schwartz, 2008).  Figure 4 shows sequences 
of images for different drift speeds.  The images are all 
shown from the reference frame of the moving vortices; in 
this frame, the vortices appear stationary and there is an 
imposed, uniform “wind” with a wind speed vd.  For small 
drift/wind speeds (Fig. 4(a)), the front still manages to 
propagate against the wind.  For a large range of drift/wind 
speeds, the front is frozen with respect to the vortex chain, as 
shown in Figure 4(b).  If the drift/wind is sufficiently large, 
the front is “blown” backward, as shown in Figure 4(c).  This 
behaviour does not depend on whether or not the vortices are 
in an ordered or disordered pattern; as seen in Figure 4(d), 
reaction fronts are pinned in the face of an opposing wind 
even for disordered vortex flows. 

  
Figure 3. (a)  Experimental results showing non-dimensional 
front speed ξ as a function of non-dimensional frequency ν.  
The dotted lines show the theoretical predictions for mode-
locked speeds.  (b)  Parameter-space plot showing regimes for 
(1,1) and (1,2) mode-locking.  Filled diamonds denote unlocked 
states, whereas open squares, open circles and open triangles 
denote states with (1,1), (1,2) and combination (1,1)/(1,2) 
mode-locking, respectively. 



 
 

     

 

 

 
Figure 4. Experimental sequences showing front 
propagation in the presence of an opposing, uniform  
wind blowing right-to-left.  (a)  Small wind; front 
propagates forward to the right.  (b) Intermediate wind; 
front is frozen in the leading vortex.  (c) Strong wind; 
front is blown back to the left by the wind.  (d) Sequence 
with random vortex flow; the front still freezes. 

 
 
 
 
 
 
 
 
 
 
Figure 5.  Parameter-space diagram showing drop-out of 
mode-locking when drift exceeds oscillation of vortex 
chain.  Diamonds correspond locked fronts, squares 
partially-locked, and triangles unlocked.  The dashed line 
corresponds to the condition vd = vo, where the transport 
changes from diffusive to superdiffusive. 

  
Figure 6. Spacetime plots (with time increasing along 
vertical) showing interaction between a reaction front and a 
moving vortex.  (a) Fast-moving vortex temporarily drags 
front, but pinning drops out as vortex (white diagonal line) 
continues onward.  (b) Slightly slower vortex pins and 
drags reaction front indefinitely. 

Different types of front behaviour are possible if there is both 
drifting and oscillation of the vortex chain.  Of course, frozen 
(pinned) fronts are possible, as well as mode-locked fronts.  

There is also a “Sisyphus” state in which the front 
momentarily propagates forward against the wind but is then 
blown backward when the lateral oscillation is in the same 
direction as the drifting.  The net result of the Sisyphus state 
is a front that remains stationary overall. 

An important question is the dependence of the front 
behaviour on the type of transport in the system.  In these 
experiments, the long-range transport changes from diffusive 
to superdiffusive when the drift velocity vd is increased 
beyond the maximum oscillatory velocity vo.  A parameter-

space diagram (Figure 5) shows that mode-locking behaviour 
drops out when vd exceeds vo, coincident with the transport 
becoming superdiffusive.  There are other things that change 
about the flow at the vd = vo line, so the drop-out of mode-
locking is not necessarily due specifically to the change in 
transport from diffusive to superdiffusive.  For instance, there 
is a wavy jet that weaves between the vortices that is 
periodically cut when vd < vo but which remains intact when 
vd > vo.  Furthermore, front propagation in cases with 
diffusive mixing is not always characterized by mode-
locking.  Consequently, additional research is needed to 
address more generally the differences in front propagation 
between cases with diffusive and superdiffusive transport. 

A simple modification to the experimental apparatus in 
Figure 1 enables us to generate a flow with a single vortex 
instead of a vortex chain.  Instead of having two rings of 
magnets in the magnet assembly below the fluid, we place 
only two magnets (with opposite polarity) on the plexiglass 
disk attached to the motor.  Experimentally, we turn on the 
radial current, trigger a reaction front at some location in the 
annulus, allow the front to propagate outward until it spans 
the annular region, and then start the motor.  The fluid in the 
annulus above the magnet pair has a vortex which moves 
around the annulus above the two magnets.  When the 
magnet pair passes below the region with the reaction front, 
the vortex itself passes through the reaction. 

Figure 6 shows spacetime plots corresponding to the collision 
of a single vortex with a reaction front.  The dark lines in Fig. 
6 show the leading edges of the reaction front, and the 
moving vortex – which is moving to the left in these 
sequences – can be seen as a diagonal white line.  For early 
times, the reaction front (initiated near the right in both Figs. 
6a and b) moves slowly in both directions (seen by the large 
slopes at early times) since there is no flow in the vicinity.  
When the vortex reaches the reaction front, there is a small 
deflection of the right-ward moving front, but the vortex 
mainly passes through, as is always the case when the vortex 
and front are propagating in opposite directions.  The left-
ward moving vortex grabs the left-ward moving front.  If the 
vortex is travelling too fast (Fig. 6(a)), the front drops off 
after a few moments.  On the other hand, if the vortex is 
moving slightly slower (Fig. 6(b)), it pins and drags the front 
for the duration of the experiment. 
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Figure 7.  Parameter-space diagram showing pinning of 
reaction front by moving vortices.  The non-dimensional 
vortex strength μ is the maximum flow velocity within 
the vortex, normalized by the reaction-diffusion front 
propagation speed vrd.  The non-dimensional lateral speed 
ε of the vortex is the vortex speed divided by vrd.  The 
diamonds/squares/triangles denote pinned fronts, 
unpinned, and marginally-pinned fronts, respectively.  
The dashed curve denotes an approximate boundary 
between pinned and unpinned states. 

Figure 7 shows a parameter-space diagram that characterizes 
the conditions in which a moving vortex pins and drags a 
reaction front indefinitely.  The horizontal axes denotes the 
non-dimensional speed ε at which the vortex is moving, 
normalized by the speed at which a front propagates in the 
reaction-diffusion regime (with no fluid flows).  The vertical 
axis denotes the non-dimensional vortex strength μ, defined 
as the maximum vortex velocity divided by the RD speed. 

We can now explain the mode-locking discussed in Section 3 
in terms of the pinning of the reaction front by moving 
vortices.  If the vortex chain is oscillating periodically in the 
lateral direction, then during half of the period, the vortices 
are moving in the same direction as the front.  During the 
other half, the vortices are moving against the reaction front.  
When moving in the same direction as the front, the vortices 
pin and drag the front with them (if vo is large enough).  
When the vortices reverse direction, they release the reaction 
front since there is no pinning when the vortices travel in a 
direction opposite that of the fronts.  The process repeats with 
the same period as the vortex oscillation, with the front being 
dragged by the vortices when they move one direction, and 
then being released when the vortices move the opposite 
direction.  This provides a “ratcheting” mechanism by which 
the front motion is locked to the frequency of oscillation. 

5.  DISCUSSION 

Ultimately, a general theory is needed to describe front 
propagation in advection-reaction-diffusion systems.  In 
flows dominated by moving vortices, it might be possible to 
use front pinning to describe front motion.  With this 
approach, the velocity field can be replaced by a collection of 
point vortices, with each vortex assigned a strength based on 
the circulation determined from the velocity field.  The effect 
on front propagation of each vortex moving through the 
system can then be determined to first-order by the 

parameter-space diagram of Figure 7.  If a vortex collides 
with the front, moving in the same direction as the front, then 
that vortex pins and drags the front if its circulation and 
lateral speed are within the pinning range of Figure 7. 

Experiments are currently under way to test the applicability 
of a pinning-centered approach to describing front 
propagation in a complicated vortex-dominated flow. 
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