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Abstract: Exciton-phonon dynamics on a 1D lattice with long-range exciton-exciton interaction has been 
introduced and elaborated. The long-range interaction leads to a nonlocal integral term in the motion 
equation if we go from discrete to continuous space. It has been found that in some particular cases for 
power-law interaction the integral term can be expressed through a fractional order derivative. In other 
words, the non-locality originating from the long-range exciton interaction results in dynamic equations 
with space derivatives of fractional order. New theoretical frameworks to study non-linear quantum 
dynamics with long-range interaction have been established. Those frameworks are: fractional 
generalization of Zakharov system, Hilbert-Zakharov system, Hilbert-Ginzburg-Landau equation and 
nonlinear Hilbert-Schrödinger equation. We also discuss non-linear fractional Schrödinger equation and 
fractional Ginzburg-Landau equation. 
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1. INTRODUCTION 

Dynamic lattice models are widely used to study a broad set 
of physical phenomena and systems. In the early 1970’s a 
novel mechanism for the localization and transport of 
vibrational energy in certain types of molecular chains was 
proposed by A.S. Davydov (Davydov, 1973). He pioneered 
the concept of the solitary excitons or the Davydov soliton 
(Davydov and Kislukha, 1973). Our focus is analytical 
developments on quantum 1D exciton-phonon dynamics with 
power-law long-range exciton-exciton interaction 
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for excitons located at the 
lattice sites n and m. In addition to the well-known 
interactions with integer values of s, some complex media 
can be described by fractional values of s (see, for example, 
references in (Zaslavsky et al., 2006). Using the ideas 
developed at first in (Laskin and Zaslavsky, 2006), we 
elaborate the Davydov model for the exciton-phonon system 
with a fractional power-law exciton-exciton interaction. It has 
been shown that 1D lattice exciton-phonon dynamics in the 
long-wave limit can be effectively presented by the general 
system of two coupled equations for exciton and phonon 
dynamic variables. The dynamic equation describing the 
exciton subsystem is the fractional differential equation, 
which is manifestation of non-locality of interaction, 
originating from the long-range interaction term. From this 
general system of two coupled equations we obtain the 
following theoretical frameworks to study non-linear 
quantum dynamics with long-range interaction: non-linear 
fractional Schrödinger equation, fractional Ginzburg-Landau 
equation, fractional generalization of Zakharov system, 
Hilbert-Zakharov system, Hilbert-Ginzburg-Landau equation 
and nonlinear Hilbert-Schrödinger equation.  

 

The paper is organized as follows. In Sec.2 we generalize 
Davydov’s Hamiltonian for the case of long-range power-law 
exciton-exciton interaction. The system of two coupled 
discrete equations of motion for exciton and phonon 
subsystems have been found using the Davydov anzatz. 
Transformation to the system of two continuous equations of 
motion has been performed in the long wave limit. Sec.3 
focuses on new nonlinear fractional differential equations 
resulting from our general approach to study the 1D exciton-
phonon system with long-range interaction. In conclusion, we 
outline our new developments. 

2. LATTICE EXCITON-PHONON HAMILTONIAN WITH 
LONG-RANGE INTERACTION 

2.1  Davydov’s Hamiltonian 

To model 1D quantum lattice dynamics with long-range 
exciton-exciton interaction we follow (Davydov, 1991) and 
consider a linear, rigid arrangement of sites with one 
molecule at each lattice site. The Davydov's Hamiltonian 
reads 

,intphex HHHH ++=   (1) 

Here Hex is the Hamiltonian operator of the exciton system, 
which describes dynamics of intra-molecular excitations or 
simply excitons, Hph is phonon Hamiltonian operator, which 
describes molecular displacements or, in other words, the 
lattice vibrations, and Hint is the exciton-phonon operator, 
which describes interaction of an exciton with the lattice 
vibrations. The exciton Hamiltonian is  
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where +
nb  is creation and nb  is annihilation operators of an 

exciton on the n site. Operators +
nb  and nb satisfy the relations 

[ nb , +
mb ]=

mn,δ , [ nb ,
mb ]=0, [ nb , +

mb ]=0. Parameter ε is 

exciton energy on the site, mnJ ,.  is the exciton transfer matrix, 
which describes exciton-exciton interaction between sites n 
and m. To extend Davydov's model and go beyond the 
nearest-neighbour interaction we introduce the power-law 
interaction between excitons on sites n and m 
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where J is the interaction constant, parameter s covers 
different physical models; the nearest-neighbor 
approximation (s=∞), the dipole-dipole interaction (s=3), the 
Coulomb potential (s=1). Our main interest will be in 
fractional values of s that can appear for more sophisticated 
interaction potentials attributed to complex media.  

The phonon Hamiltonian Hph is  
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where w is the elasticity constant of the 1D lattice and nû is 
the displacement operator from the equilibrium position of 
the site n, np̂  is the momentum operator of the site n and m is 
molecular mass. 

Finally, the exciton-phonon Hamiltonian Hint is  
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with coupling constant χ. Further, aiming to obtain a system 
of classical dynamic equations for the exciton-photon system 
under consideration, we introduce Davydov's ansatz. 

2.2  Davydov’s anzatz and motion equations 

To study system (1) we introduce quantum state 
vector >)(| tφ  following (Davydov, 1973, 1991), (Scott, 
1992) 
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where quantum vectors |Ψ(t)> and |Φ(t)> are defined by 
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here  is the Planck’s constant, |0>ex and |0>ph are vacuum 
states of the exciton and phonon subsystems and )(tnξ  is the 
diagonal matrix element of the displacement operator nû in 
the basis defined by (6), while )(tnη  is diagonal matrix 
element of the momentum operator np̂  in the same basis, 
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The state vector >)(| tφ  satisfies the normalization condition 
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with 2|)(| tnψ  being the probability to find exciton on the nth 
site and N is the total number of excitons. 

Therefore, the study of dynamics of the exciton-photon 
system (1) can be performed in terms of the functions )(tnψ , 

)(tnξ  and )(tnη . In other words, Davydov's ansatz defined by 
(6)-(8) allows us to go from the quantum Hamiltonian 
operator introduced by (1) to the Hamiltonian function 
developed below. In the basis of the vectors >)(| tφ , the 
Hamiltonians Hex, Hph, and Hint become the functions of 
classical dynamic variables )(tnψ , )(* tnψ , )(tnξ  and )(tnη  
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From (9)-(11) we obtain the system of dynamic equations in 
discrete space for )(tnψ , )(tnξ  and )(tnη , 
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where the constant Λ is  
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Substituting )(tnη  from (13) into (14) yields 
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Our focus now is the system of two coupled discrete dynamic 
equations (12) and (15). 

2.3 From lattice to continuum 

To go from the discrete to continuum version of (12) and (15) 
let us introduce 
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where )(tnψ  is related to ),( tkϕ  as 
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and k can be considered as a wave number. In the long wave 
limit when the wavelength exceeds the intersite scale a (let's 
put for simplicity a=1) we may consider ),( tkϕ  as a kth 
Fourier component of continuous function ),( txψ , 

),()( 0 txt kn ψψ ⎯⎯ →⎯ →
 and ),( tkv as a kth Fourier component 

of function ),,( txξ  ),()( 0 txt kn ξξ ⎯⎯ →⎯ →
. That is the 

functions ψ(x,t) and ),( tkϕ are related each other by the 
Fourier transform  
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and similarly for ξ(x,t) and v(k,t), 
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Therefore, we conclude that in the long wave limit (12) and 
(15) become continuous equations of motion 
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where the kernel K(x) in (16) has been introduced as  
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with the function )(kG  defined by  
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here Jn is given by (3) and finally, ).0(J−Λ=λ  

Thus, we obtained a new system of coupled dynamic 
equations (16) and (17) which model 1D exciton phonon 
dynamics with long-range exciton interaction (3). The field 

),( txψ  describes the exciton subsystem and the field ),( txξ  
describes the phonon subsystem. Equation (16) is the integro-
differential equation while equation (17) is the differential 
one. The integral term in (16), which is a manifestation of 
non-locality of interaction, comes from the long-range 
interaction term in the Hamiltonian (2). 

3. FRACTIONAL DIFFERENTIAL EQUATIONS TO 
STUDY EXCITON-PHONON DYNAMICS  

To transform the system (16), (17) into the system of coupled 
differential equations of motion we use the properties of 
function )(kG at the limit k→0, which can be obtained from 
the asymptotics of the polylogarithm (Laskin and Zaslavsky, 
2006) 

,32,||
)2/)1(sin()(

~)( 1 <≤
−Γ

− sk
ss

JkG s

π
π  (18) 

,3,ln~)( 2 =− skJkkG   (19) 

,3,
2

)2(~)( 2 >
− sksJkG ζ   (20) 

where )(sΓ is Γ -function, )(sζ  is the Riemann zeta 
function and coefficient sD  is defined by 
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It is seen from (18) that the fractional power of k occurs for 
interactions with 2 ≤ s < 3 only. In the coordinate space 
fractional power of |k| gives us the fractional Riesz derivative 
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of order s-1 (Samko et al., 1993), (Saichev and Zaslavsky, 
1997), and we come to a fractional differential equation 
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here 1−∂ s
x  is the Riesz fractional derivative 

).,(||
2
1),( 11 tkkedktx sikxs

x ϕ
π

ψ −
∞

∞−

− ∫−=∂  

Thus, our main result is the new system of coupled equations 
(17) and (22) to study one-dimensional exciton-phonon 
dynamics with long-range interaction on 1D lattice.  

Now let us introduce and briefly discuss a few new general 
theoretical frameworks which come out from our approach to 
study one dimensional lattice quantum dynamics with long-
range intersite interaction. They are: fractional generalization 
of Zakharov system, non-linear fractional Schrödinger 
equation, fractional Ginzburg-Landau equation, Hilbert-
Zakharov system, nonlinear Hilbert-Schrödinger equation, 
and fractional Hilbert-Ginzburg-Landau equation. 

3.1 Fractional generalization of Zakharov system 

Introducing new variable 
x

txtx
∂

∂
=

),(),( ξσ  turns (17) and 

(22) into the following new system of equations for the fields 
ψ(x,t) and σ(x,t), 
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where mv /ω=  is the velocity of sound. This system of 
two equations can be considered as a fractional generalization 
of the Zakharov system introduced in 1972 to study the 
Langmuir waves propagation in an ionized plasma 
(Zakharov, 1972). 

3.2 Non-linear fractional Schrödinger equation 

Assuming the existence of a stationary solution ∂ξ(x,t)/∂t=0 
in the system of (17) and (22) results in the following 
fractional differential equation for wave function ψ(x,t), 
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which can be rewritten in the form of nonlinear fractional 
Schrödinger equation, 
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where 32 <≤ s  and the wave function ),( txφ  is related to 
the wave function ψ(x,t) by 
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It follows from (20) that for s>3, (26) turns into the non-
linear Schrödinger equation 
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Finally, let's note that the linear fractional Schrödinger 
equation in one and three dimensions have been developed at 
first in (Laskin, 2000a,b,c, 2002). Three quantum mechanical 
problems were studied in these papers for physical 
applications of developed fractional quantum mechanics; a 
quantum particle in an infinite potential well, fractional 
quantum oscillator, and fractional Bohr atom. The energy 
spectra for these three fractional quantum mechanical 
problems were found using the linear fractional Schrödinger 
equation. 

3.3 Fractional Ginzburg-Landau equation 

In the case of propagating waves we can search for the 
solution of system (17) and (22) in the form of travelling 
waves; ψ(x,t) = ψ(x-vt), and ξ(x,t) = ξ(x-vt), where v is 
velocity of the wave. From (17) and (22) let’s go to (23) and 
(24) and substitute ψ(x,t)= ψ(ζ), and σ(x,t)= σ(ζ), where ζ=(x-
vt). It is easy to see that a solution of (24) is 
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Then (23) results in nonlinear equation 
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where γ is the nonlinearity parameter 
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Equation (29) can be considered as a fractional generalization 
of the well known Ginzburg-Landau equation. Fractional 
Ginzburg-Landau equation has been initially proposed in 
(Weitzner and Zaslavsky, 2003). 
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3.4 Hilbert-Zakharov system 

It follows from (18) that in the case s=2 the function G(k) at 
the limit k→0 takes the form 

.2|,|~)( =skJkG π  

Hence, (23) becomes 
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here H  is the Hilbert integral transform defined by 
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where P stands for the Cauchy principal value of the integral. 

We will call the system of equations (31) and (24) as the 
Hilbert-Zakharov system 

3.5 Nonlinear Hilbert-Schrödinger equation 

In the case when s=2 and ∂ξ(x,t)/∂t=0, the system of (16), 
(17) results in the following non-linear quantum mechanical 
equation for wave function ψ(x,t), 
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Introducing wave function ),( txφ related to the wave 
function ψ(x,t) by means (27), brings the Hilbert-Schrödinger 
equation 
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3.6 Hilbert-Ginzburg-Landau equation 

In the case when s=2, let's search for the solution of the 
system (31), (24) in the form of travelling waves, ψ(x,t)= ψ(x-
vt), and ξ(x,t)= ξ(x-vt), where v is velocity of the wave. The 
solution of (24) has the form of (27). Thus, (31) results in 
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ζ
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where γ is the nonlinearity parameter introduced by (03). We 
will call (34) as the Hilbert-Ginzburg-Landau equation. 

4. CONCLUSIONS 

It has been shown that the long-range power-law interaction 
leads, in general, to a nonlocal integral term in the equation 
of motion if we go from discrete to continuous space. In 
some particular cases for power-law interaction with non-
integer power s the integral term can be expressed through 
the fractional order derivative. That is, non-locality 

originating from the long-range interaction reveals the 
dynamics in the form of space derivatives of fractional order. 
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