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Abstract: In this paper we demonstrate the strong correlation in the spectrum area close to
the spectral peak in cases when the Benjamin - Feir instability causes intense wave groups of
unidirectional deep-water surface water waves referred to freak events. A simple phase coherence
estimator in the form of an autobicorrelation function is suggested and tested on the basis of the
results of numerical simulations within different frameworks. The correlation reaches the value
of a unity, and, thus, the random phase approximation is definitely violated for these waves.
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1. INTRODUCTION

Irregular waves arise in many important physical problems
and are subject of investigation. The study of irregular
wave dynamics and statistics is relevant for correct phys-
ical understanding and for practical applications as well.
Sea waves are an example of inherently stochastic waves.
They are often understood as a combination of quasi-
sinusoidal waves with independent random uniformly dis-
tributed phases (the Gaussian sea). If waves were linear
and random, they would possess the Gaussian probability
distribution function due to the central limit theorem.

The difference between the Gaussian sea approximation
and the real sea results in recognizing the problem of freak
wave or rogue wave phenomenon, see reviews (18; 11; 19).
The attempts to integrate the wave nonlinearity effect
into the statistical models have been undertaken many
times with a certain success. However, each time these
endevours employ the condition of weak nonlinearity,
which is questionable when applied to freak wave events.
Meanwhile, obtaining the statistical description of freak
waves for the case of a given wave energy spectrum is the
cherished aim of the researchers.

Kinetic approach is conventional and well-established for
the study of random wave spectrum evolution. The kinetic
theory is weakly nonlinear, uses closure assumptions, thus,
is eventually capable of describing only near-Gaussian
processes, and it disregards wave phases. The stochastic
approach employs dynamical models which resolve the
wave phases. Then the relations between the spectral
and statistical wave characteristics may be established.
Instead of computing the kinetic equations, the stochastic
approach has become very popular due to computer power
progress and building large and well-equipped experimen-
tal facilities.
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The stochastic modelling requires definition of the ini-
tial wave fields. Typically the initial condition is defined
in the form of wave fields obeying some spectrum with
random uniformly distributed phases. A great number
of numerical and laboratory experiments prove that this
initial condition undergoes strong evolution at the initial
stage, what changes the average spectrum of the waves,
see (21; 22; 13; 15; 23; 31; 20; 4; 5; 6; 24; 26; 27; 28)
among others. Thus, the wave fields at this stage cannot be
considered statistically stationary. Limited fetches (due to
the limitation of the laboratory facility or short numerical
simulations) may prevent the achievement of the station-
ary state at all.

The most striking nonlinear effect, which is now believed
able to cause rogue waves is the Benjamin - Feir instability
(otherwise, the side-band or the modulational instability,
see for instance (16; 34)), which leads to the generation
of intense wave groups from uniform wave trains in deep-
water conditions. This effect for unidirectional waves has
been confirmed many times by means of numerical simula-
tions, and also by laboratory measurements. Meanwhile, it
is known to be weakened and even cancelled, when broad-
band waves or random waves are concerned.

The Benjamin - Feir index (BFI) was introduced by
Onorato et al. (21) and Janssen (15) to measure the
strength of the nonlinear self-modulation effects for a
given wave energy spectrum. This compound spectral
parameter is in agreement with its dynamic counterpart,
which follows from the weakly nonlinear weakly modulated
theory for surface waves (the framework of the nonlinear
Schrödinger equation, NLS). Then the BFI corresponds to
the similarity parameter of the NLS equation, otherwise,
the soliton number.

The NLS equation is a unique mathematical model due
to the property of integrability. Its solutions have been
suggested to describe real freak waves in the ocean (12;
14; 25; 1). The so-called breather solutions of the NLS
equation are actually solitary waves interacting with other
background waves. The similarity of the breather solutions



and the large-wave events observed in numerical simula-
tions has been pointed out many times (14; 8; 7). The
existence of long-living strongly nonlinear wave groups
similar to the envelope solitons has been reported recently
for numerical simulations of fully nonlinear equations for
hydrodynamics (9; 29).

The framework of the NLS equation for unidirectional
waves requires the conditions of weak nonlinearity and
narrow spectrum. In the general case the solitary-like
patterns are supposed to show themselves as coherent wave
structures, what implies non-zero correlation between the
Fourier modes. The dynamics of a single four-wave res-
onance quartet was studied within the framework of the
Zakharov equation by means of the analytic solution in
(32; 17); in (32) ensembles of the wave quartets were
considered as well and compared versus the results of the
kinetic approach (15). It was shown, in particular, that
initially random phases develop a significant coherence in
the course of evolution.

In this paper we deal with the deep-water limit, and
the unidirectional case of surface sea waves, which is the
most investigated. The wave trains are generally supposed
narrow-band; the physics is governed by the free wave com-
ponents, while the bound waves (Stokes corrections) under
the narrow-band assumption may be trivially obtained on
the basis of the free waves.

The coherence might be revealed in the dynamics of the
strongly interacting components (when they may be sin-
gled out) such as resonance quartets or soliton-like wave
groups. We show that the wave coherence can be revealed
globally in a stochastic wave field. A more detailed de-
scription of this study is given in (30).

2. STOCHASTIC NUMERICAL SIMULATIONS OF
MODULATIONALLY UNSTABLE WAVE FIELDS

In this section we summarize the results of numerical
simulations, performed within the frameworks of the non-
linear Schrödinger equation, its high-order generalization,
the Dysthe equation with the exact deep-water linear
dispersion law taken into account (10; 33), and the fully
nonlinear simulations of the Euler equations in the confor-
mal variables. The algorithms are briefly described in (29).
Non-breaking waves were considered; 100 wave ensembles
were used for the averaging.

In all cases the initial wave realizations were defined in
the form of a linear superposition of Stokes waves with
random phases, similar to those described in (27), which
obey the Gaussian spectrum. The carrier wavenumber
was chosen k0 ≈ 1.7802 m−1. Due to the deep-water
conditions, the mean wave period is defined through the
linear dispersion law as T0 = 1.5 s. The NLS model was
used to solve waves with a moderate initial steepness,
k0�rms ≈ 0.042 (where �rms is the root-mean-square
surface wave displacement defined on the basis of the free
wave component), for the different initial spectrum widths.
The fully nonlinear simulations were performed for one
initial spectrum width, �/k0 ≈ 0.076, where � is defined
as the second moment of the average spectrum. In terms
of the introduced parameters, the BFI may be defined as
(15)
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Fig. 1. The temporal dependences of the BFI versus the

scaled time for numerical simulations (lines) with
different initial spectrum widths and wave intensities,
and for the laboratory measurements (28) (symbols)
with different spectral widths and shapes
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and the characteristic nonlinear time we define as

Tnl =
1

!0k20�
2
rms

. (2)

In the course of evolution the spectrum width, � and
the BFI evolve with time. The variable BFI for the
simulations is shown in Fig. 1 as the function of the scaled
time. The results of the NLS simulations are represented
by red solid lines, and the results of the fully nonlinear
simulations are represented by blue dashed lines.

The results of laboratory measurements (26; 28) are given
in Fig. 1 with symbols. In the laboratory experiments
the spatial wave evolution was considered, so that the
distances are recomputed to the corresponding times sup-
posing that the waves propagate with the group velocity.
It is evident that the curves corresponding to the two
sets of numerical simulations and the results of laboratory
measurements well agree when represented in the scaled
variables. For sufficiently long times kinds of steady states
are achieved in all the cases.

The Alber theory for narrow-band weakly nonlinear ran-
dom waves (2; 15) predicts the cancellation of the Ben-
jamin - Feir instability effect for BFI < 1. It may be seen
in Fig. 1 that this threshold describes well the qualitative
difference in the evolution of the BFI. The wave fields with
initially large values of the BFI tend to the state which
seems to be marginally stable. The wave fields with small
values of the BFI remain practically unchanged during the
evolution.



3. THE EVIDENCE OF PHASE COHERENCE

The spectral phases are implied by the concept of the
Gaussian sea to be uniformly distributed. Indeed, the
phase distribution observed in our simulations may be
considered uniform (see (30)). However, the nonlinear
wave phases are obviously not fully independent as it is
in the linear approximation.

The phase coherence is supported by the presence of
coherent wave structures. Some exact solutions of the NLS
equations are discussed in this context in (30). When many
nonlinear coherent structures are present in the wave field,
the dynamics is supposed to be quite complicated.

We apply the following correlation function to make the
coherence between the Fourier phases evident:

R(�, t) =
R1

R2
,

R1 =

∣∣∣∣∣
N∑

n=1

Sn(k0 + �)Sn(k0 − �)S∗n(k0 + �′)S∗n(k0 − �′)

∣∣∣∣∣ ,
R2 =

N∑
n=1

∣Sn(k0 + �)Sn(k0 − �)S∗n(k0 + �′)S∗n(k0 − �′)∣ ,

� =
2�

L
m, �′ =

2�

L
(m+ 1), m ≥ 0.

(3)

In (3) k0 is the dominant wavenumber, � and �′ specify
the wavenumber offsets according to the wavenumber dis-
cretization (m counts the spectral nodes), L is the compu-
tational domain length. The summation is performed over
all N realizations.

The results of the computation of the autobicoherence
function (3) for the conditions k0�rms ≈ 0.042, �/k0 ≈
0.076 (and BFI ≈ 1.56) are presented in Fig. 2 by the
colour intensity. Different models are simulated: the NLS
equation (Fig. 2a), the Dysthe equation (Fig. 2b), and
the Euler equations in conformal variables (Fig. 2c). The
horizontal axis shows the normalized time, the vertical axis
represents the wavenumber offset. The temporal depen-
dence of the average spectrum width � is given over the
diagram (the solid line), and the spectrum shape at t = 0
for k ≥ k0 is shown to the right of the diagram (the line
with circles); both are given for the reference.

The case of the NLS equation simulation is shown in
Fig. 2a. It is obvious that the initial condition corresponds
to an insignificant correlation (dark area near t = 0).
But with time the correlation for a sufficiently large offset
quickly grows up to unity. While the Fourier modes which
are sufficiently far from the spectral peak are thus shown
to be absolutely correlated, the most energetic area of
the spectrum close to the spectral peak turns out to be
uncorrelated (at least with respect to the autobicorrelation
function (3)).

The obtained result is not an artifact of the NLS approxi-
mation, but is confirmed in the simulations of the Dysthe
model (Fig. 2b) as well as the fully nonlinear equations
(Fig. 2c). Some difference between the diagrams Fig. 2a-c
may be noticed only far from the dominant wavenumber.

Steeper wave conditions (k0�rms = 0.056) are concerned
in Fig. 3 for the same initial spectrum width �/k0 ≃ 0.076
(BFI = 2.08). The waves are simulated by means of the

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.2

0.4

0 100 200 300
t / T

0

δ 
/ k

0

a)

0.2

0.4

0.6

0.80

0.2

0.4

0 100 200 300
t / T

0

δ 
/ k

0

b)

0.2

0.4

0.6

0.80

0.2

0.4

0 100 200 300
t / T

0

δ 
/ k

0

c)

Fig. 2. Diagrams of the correlation estimator R(�, t) shown
by the colour intensity. The temporal dependence of
the average spectrum width is given over the diagram
(the solid line) for the reference, and the spectrum
shape at t = 0 is shown to the right of the diagram
(the line with circles) for the reference. The initial
condition for simulation BFI(t = 0) = 1.56 is com-
puted in different frameworks: the NLS equation (a),
the Dysthe model (b), the fully nonlinear simulations
(c)
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Fig. 3. The diagram of the correlation estimator R(�, t)
shown by the colour intensity. The temporal depen-
dence of the average spectrum width is given over
the diagram (the solid line) for the reference, and the
spectrum shape at t = 0 is shown to the right of the
diagram (the line with circles) for the reference. The
fully nonlinear simulation with BFI(t = 0) = 2.08 is
reported

fully nonlinear model. Although the correlation picture in
Fig. 3 is less sharp than in Fig. 2, the level of the phase
coherence is again very high. It is also significant that in
the course of evolution about one half of the realizations
resulted in very steep waves; these simulations were not
taken into account after the steep event occurrence. Thus,
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Fig. 4. Diagrams of the correlation estimator R(�, t) shown
by the colour intensity. The temporal dependence of
the average spectrum width is given over the diagram
(the solid line) for the reference, and the spectrum
shape at t = 0 is shown to the right of the diagram
(the line with circles) for the reference. The fully
nonlinear simulations with BFI(t = 0) = 1.04, (a)
and BFI(t = 0) = 0.52, (b) are reported (different
wave intensities)
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Fig. 5. Diagrams of the correlation estimator R(�, t) shown
by the colour intensity. The temporal dependence of
the average spectrum width is given over the diagram
(the solid line) for the reference, and the spectrum
shape at t = 0 is shown to the right of the diagram
(the line with circles) for the reference. The NLS
equation simulations with BFI(t = 0) = 1.19, (a)
and BFI(t) = 0) = 0.79, (b) are reported (different
spectrum widths)

in a certain sense, less coherent wave fields compose the
statistical data at longer times.

Different wave amplitudes with the same initial spectrum
width are considered in Fig. 4 within the fully nonlinear
framework with the initial values of the BFI equal to 1.04

and 0.52 (Fig. 4a and Fig. 4b respectively). The level of
the correlation and the interval of wave numbers, where
the coherence is revealed are noticeably smaller for the
case displayed in Fig. 4b in comparison with Fig. 4a.

In Fig. 5 wave fields with the same root-mean-square
surface displacement but different initial spectrum widths
are considered. The typical wave amplitude is modest, and
the NLS equation is solved to obtain the results. Similar
to Fig. 4, the initial BFIs were chosen equal to 1.19 and
0.79 in Fig. 5a and Fig. 5b correspondingly. Again, the
coherence is much less evident, if BFI < 1 (Fig. 5b), than
if BFI > 1 (Fig. 5a).

4. CONCLUSION

The stochastic approach to the study of intense sea waves,
and in particular the freak or rogue waves, has become
quite popular during the recent years. The irregular waves
are usually defined as a linear superposition of Stokes
waves with random phases following the conventional
concept of a Gaussian or near-Gaussian sea. Although the
random phase assumption is acknowledged to be violated
due to nonlinearity, the obtaining of the phase correlation
functions for realistic waves from general principles is
a hard task. The four-wave interactions are the most
efficient for the deep-water case, but the resonance wave
quartets interact among each other (32; 17); moreover,
quasi-resonance wave interactions obviously have to be
taken into account (32; 3) to obtain a reliable result.

Non-resonant interactions lead to the appearance of phase-
locked modes in the Fourier spectrum. The bound wave
components (otherwise the nonlinear Stokes corrections)
at multiple frequencies/wavenumbers are naturally ob-
served in experiments and may be accounted by the ac-
cepted models. The free wave components (exact resonant
or near resonant wave modes) are considered governing the
physics of nonlinear waves. The bound waves at multiple
frequencies/wavenumbers are an indicator of occurrence of
steep waves. The bound waves are coherent waves, but in
the spectrum they are far from the spectral peak.

The Benjamin - Feir (modulational) instability has been
shown to be a nonlinear effect which increases the proba-
bility of freak waves in the deep-water narrow-band case.
The onset of the Benjamin - Feir nonlinear instability is
well controlled by the Benjamin - Feir index, BFI. Initially
unstable wave fields tend to a marginally stable state.
The self-modulation effect becomes apparent through the
occurrence of large-amplitude coherent wave groups.

In this short note we employ the empirically written esti-
mator for the wave coherence, complied with exact model
solutions of the nonlinear Schrödinger equation as well
as with the general comprehension of the resonance wave
quartet nature, see details in (30). We focus the attention
on the coherence in the Fourier space, which corresponds
to harmonics, phase-locked due to the nonlinearity. These
modes indicate the presence of the mentioned above large-
amplitude coherent wave groups (freak events) rather than
individual steep waves.

The estimator, which is actually a kind of an autobicor-
relation function, turns out to be efficient to reveal wave
coherence in all cases, when the self-modulation effects are



significant. The deep-water frequency spectrum is twice
narrower than the wavenumber spectrum, and, thus, prob-
ably even a stronger wave coherence might be observed
in the frequency spectrum. Indeed, a preliminary analysis
corroborated the ability of the suggested autobicorrelation
estimator to reveal the coherence in laboratory-measured
time series of the surface displacement.

We conclude that in the case of modulationally unstable
wave fields the wave correlation is quite significant and
can be revealed in rather close vicinity to the spectral
peak. This part of the spectrum cannot be considered as a
superposition of independent waves with random phases.
The phase coherence should be taken into account when
defining the nonlinear waves accurately.
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