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Abstract:
This talk concerns the role played by the planar Circular Restricted Three-Body problem in
the approximation of the Bicircular model. The comparison between the differential equations
governing the dynamics leads to the definition of Region of Prevalence where one restricted
model provides the best approximation of the four-body model. According to this prevalence,
the Patched Three-Body Problem approximation is used to design first guess trajectories for a
spacecraft travelling under the Sun-Earth-Moon gravitational influence.
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INTRODUCTION

Starting from the work of Belbruno and Miller, (Belbruno
and Miller (1993)) where the perturbation of the Sun has
been shown to decrease the amount of fuel necessary for a
Earth-to-Moon transfer, the Sun-Earth-Moon-Spacecraft
restricted 4-body model has been commonly adopted to
describe the Spacecraft motion.

One of the technique used to approximate the 4-body
dynamics, or in general the n-body problem, is the coupled
restricted three-body problem approximation: partial or-
bits from different restricted problems are connected into
a single trajectory, yielding energy efficient transfers to
the Moon (Koon et al. (2001)), interplanetary transfers
(Dellnitz et al. (2006)) or very complicated itineraries
(Gómez et al. (2004)).

The procedure requires the choice of a Poincaré section
where the phase spaces of the two different models have
to intersect: the analysis of the Poincaré maps of the
invariant manifolds reduces the design of the trajectory to
the selection of a point on the section. The Poincaré section
plays also a role in the accuracy of the approximation of
the undertaken dynamical system: indeed the encounter
with the Poincaré section is the criteria for switching from
the first to the second restricted three-body problem. In
the mentioned works the Poincaré section is chosen a
priori by the user in order to accomplish certain design
constraints or to simplify the selection of the connection
point and it usually consists in a hyperplane passing
through one of the primaries or lying along one of the
coordinated axis.

Although it has been shown that for design purpose the so-
lutions in a simplified model like the CR3BP are very good
approximations to real trajectories in the complicated and
full system (Parker (2006)), this work deepens from a more
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theoretical point of view on the role played by the two
restricted three-body problems in the approximation of
the 4-body system.

The undertaken model considered here for the 4-body dy-
namics is the Bicircular model (BCP), Simó et al. (1995),
while the two restricted problems are the Earth-Moon
CR3BP and the Sun-(Earth+Moon) CR3BP, where, in the
last case, the Sun and the Earth-Moon barycenter play
the role of primaries. The comparison of the mentioned
systems leads to the definition of Regions of Prevalence in
the space where one of the restricted problems performs,
at least locally, the best approximation of the Bicircular
model and therefore it should be preferred in designing the
trajectory.

Then, setting the Poincaré section according to this preva-
lence, the coupled CR3BP approximation is implemented
to design low energy transfers leaving Lyapunov orbits in
the Sun-Earth system and leading to the Moon’s region.

The plan of the paper is the following. In the first section
the CR3BP is briefly recalled and the equations of motion
for the BCP in the inertial reference frame are written.
Then, in section 2, the comparison between the BCP and
each one of the restricted problems is performed: this
analysis enables to define, in section 3, the regions of
prevalence of the two restricted systems in the approxima-
tion of the 4-body model. Section 4 concerns the design
of the transfer trajectory while section 5 deepens on the
numeral scheme used to analyze the Poincaré maps and
the selection of the connection points. Finally in the last
section some of the results are discussed.

1. DYNAMICAL MODELS

Circular Restricted Three-Body problem

The CR3BP is a simplified case of the general Three-Body
Problem and models the motion of a massless particle
under the gravitational influence of two bodies, with



masses M1 < M2, that are revolving with constant angular
velocity in circular orbit around their center of mass, see
Szebehely (1967). In the following only the planar motion
is considered.

In a rotating reference frame centered in the center of
mass, where the units of measure are normalized so that
the total mass, the distance between the primaries and
their angular velocity are equal to 1, the primaries are fixed
on the x-axis at positions (−µ, 0) and (1− µ, 0) while the
motion z(t) = x(t) + iy(t) of the massless particle evolves
following the differential equation

d2z

dt2
+ 2i

dz

dt
− z = −

[
(1− µ)(z + µ)

‖ z + µ ‖3
+

µ(z − (1− µ))

‖ z − (1− µ) ‖3

]
(1)

where µ = M2/(M1 +M2) is the mass ratio.

In (x, y) components the equation of motion assumes the
form

ẍ− 2ẏ = Ωx , ÿ + 2ẋ = Ωy
where Ω(x, y) = (x2+y2)/2+(1−µ)/r1+µ/r2+µ(1−µ)/2
is the potential function. The subscripts of Ω denote the
partial derivatives, while r1,2 are the distances between the
moving particle and the primaries. The advantage to study
the dynamics in a rotating frame is that the system (1) is
Hamiltonian and autonomous and admits a first integral
called Jacobi constant

J(x, y, ẋ, ẏ) = −(ẋ2 + ẏ2) + 2Ω(x, y) .

The potential Ω admits five critical points, the Lagrangian
points Li, i = 1 . . . 5, and represent equilibrium points for
the vector field. The points L4,5 correspond to equilateral
triangle configurations, while the remaining are placed on
the x-axis and correspond to collinear configurations of the
masses. Of particular interest for mission design purpose
are L1 and L2 and the periodic orbits surrounding them
that play the role of gates in the Hill’s region, see for
instance Koon et al. (2000).

Bicircular model

The Bicircular model (BCP), see Cronin et al. (1964),
consists in a restricted four-body problem where two of the
primaries are rotating around their center of mass, which is
meanwhile revolving together with the third mass around
the barycenter of the complete system. The massless
particle is moving under the gravitational influence of the
primaries and does not affect their motion. It is assumed
that the motion of the primaries, as like as the motion of
the test particle are co-planar. The low eccentricity of the
Earth’s and Moon’s orbit and the small inclination of the
Moon’s orbital plane, make the Bicircular a quite accurate
model to describe the dynamics of a spacecraft in the Sun-
Earth-Moon system; see for instance Yagasaki (2004) and
Mingotti et al. (2009).

Referring to Fig. 1, let S,E,M be the positions of the three
primaries, namely the Sun, the Earth and the Moon while
B and O indicate the Earth-Moon barycenter and the total
center of mass of the system. For a given time-space unit,
let us define w1 and w2 the angular velocities respectively
of the couple S and B around O and the couple E and
M around B; LS and LM the distances SB and EM ;
Mm,Me,Ms the masses of the Moon, the Earth and the
Sun and G the gravitational constant. Moreover let µs and
µm be the mass ratios

Fig. 1. Positions of the primaries in the inertial reference frame

µm =
Mm

Me +Mm
, µs =

Me +Mm

Me +Mm +Ms
. (2)

With respect to an inertial reference frame (X,Y ) whose
origin is fixed in the barycenter O and where τ denotes the
time coordinate, the positions of the primaries are given
by
S = −µsLSei(ϕ0+w1τ)

E = (1− µs)LSei(ϕ0+w1τ) − µmLMei(φ0+w2τ)

M = (1− µs)LSei(ϕ0+w1τ) + (1− µm)LMe
i(φ0+w2τ) .

In order to lighten the notation, in the following
γ1(τ) = ϕ0 + w1τ and γ2(τ) = φ0 + w2τ are used.

The motion Z(τ) = X(τ) + iY (τ) of the spacecraft is
governed by the second order differential equation

d2Z

dτ2
= −G

[Ms(Z − S)

‖ Z − S ‖3
+
Me(Z − E)

‖ Z − E ‖3
+
Mm(Z −M)

‖ Z −M ‖3
]
(3)

In the following sections the BCP is compared with two
different restricted three-body problems: the CR3BPEM
and the CR3BPSE where the Sun and the barycenter B
with mass Mb = Me+Mm play the role of primaries. Three
different reference frames and different units of measure
are involved in the analysis: the inertial reference frame
and the SE-synodical reference frame whose origin is set
in the center of mass O and the EM-synodical reference
frame centered in the point B.

Change of coordinates

Following the notation previously adopted, let (X,Y, τ)
be the space-time coordinates in the inertial reference
frame and the small letters (x, y, t) the coordinates in the
rotating systems. When necessary, in order to avoid any
ambiguity, the subscript (xs, ys, ts) and (xm, ym, tm) are
used to distinguish the set of coordinates in the CR3BPSE
and in the CR3BPEM respectively. In complex notation

Z := X + iY, zm := xm + iym, zs := xs + iys
the relations between the inertial and the synodical coor-
dinates are given by

Z = LSzse
iγ1 , τ =

ts
w1

Z = (1− µs)LSeiγ1 + LMzme
iγ2 , τ =

tm
w2

.

Concerning with the two synodical systems, the relation
between the time coordinates ts and tm is easily derived

ts =
w1

w2
tm

while the transformation between the space coordinates
(xs, ys) and (xm, ym) depends on the mutual position of
the primaries. Let θ be the angle between the positive xs-
semiaxis and the positive xm-semiaxis:

θ(τ) := γ2 − γ1 = θ0 + (w2 − w1)τ .



For any value of θ, the position and the velocity of a
particle in the two different synodical systems satisfy the
relations

zm =
LS
LM

e−iθ
(
zs − (1− µs)

)
dzm
dtm

=
LS
LM

w1

w2
e−iθ

[
i
(

1− w2

w1

)
(zs − (1− µs)) +

dzs
dts

](4)

and

zs =
LM
LS

eiθzm + (1− µs)
dzs
dts

=
LM
LS

w2

w1
eiθ
[
i
(

1− w1

w2

)
(zm

)
+
dzm
dtm

]
.

A second integration provides the relations between the
accelerations in the two systems:

d2zs
dt2s

=
LM
LS

(
w2

w1

)2

eiθ·[
−
(

1− w1

w2

)2
zm + 2i

(
1− w1

w2

)dzm
dtm

+
d2zm
dt2m

]
.

(5)

The following equalities are consequence of the third
Kepler’s law

w2
1L

3
S = G(Ms +Me +Mm), w2

2L
3
M = G(Me +Mm) . (6)

In this work the physical parameters adopted in the
numerical simulations are set according with the Jet
Propulsion Laboratory ephemeris (available on-line at
http://ssd.jpl.nasa.gov/?constants). In particular the mass
ratios are

µs = 3.040423402066 · 10−6, µm = 0.012150581

being the masses of the bodies

Ms = 1.988924 · 1030 kg Me = 5.973712 · 1024 kg

Mm = 7.347686 · 1022 kg .

In the inertial reference frame, where the space coordinates
are expressed in km and the time in seconds, the distances
LS and LM are equal to

LS = 149597870 km , LM = 384400 km

while the values of the angular velocities w1 and w2 are

w1 = 1.99098898·10−7 rad

s
, w2 = 2.6653174179·10−6 rad

s
.

2. THE COMPARISON OF THE BCP WITH THE
CR3BPS

The distance between the Bicircular model and each one
of the CR3BP is estimated as the norm of the difference of
the differential equations governing their dynamics, once
they are written in the same reference frame and in the
same units of measure. The comparison is performed in
the synodical frame proper of the considered restricted
problem, while the units of measure in both the cases will
be the dimensional one.

Comparison with SE-CR3BP

To write the equation of motion for the BCP in SE-
synodical coordinates without any time-space units rescale,
only a rotation has to be applied to the inertial coordi-
nates: Z = z̄eiγ1 , where z̄ = zsLS . In this setting the
positions of the primaries are given by

Fig. 2. Level curves of ∆SE for θ = 0

S̄ = −µsLS
Ē = (1− µs)LS − µmLMei(γ2−γ1)
M̄ = (1− µs)LS + (1− µm)LMe

i(γ2−γ1) .

The double derivative of Z(τ) turns into

d2Z

dτ2
=

(
d2z̄

dτ2
+ 2iw1

dz̄

dτ
− w2

1 z̄

)
eiγ1

then, substituting the new variables into (3), we infer

d2z̄

dτ2
+ 2iw1

dz̄

dτ
− w2

1 z̄ =

−G
[Ms(z̄ − S̄)

‖ z̄ − S̄ ‖3
+
Me

(
z̄ − T̄ )

‖ z̄ − Ē ‖3
+
Mm(z̄ − M̄)

‖ z̄ − M̄ ‖3
]
.

(7)

In the same time-space frame, CR3BPSE is described by

d2z̄

dτ2
+ 2iw1

dz̄

dτ
− w2

1 z̄ = −G
[
Ms(z̄ − S̄)

‖ z̄ − S̄ ‖3
+
Mb(z̄ − B̄)

‖ z̄ − B̄ ‖3

]
.

It follows the difference between the two models

∆SE(z̄) =‖ BCP − CR3BPSE ‖

= G
∣∣∣∣∣∣− Me(z̄ − Ē)

‖ z̄ − Ē ‖3
− Mm(z̄ − M̄)

‖ z̄ − M̄ ‖3
+
Mb(z̄ − B̄)

‖ z̄ − B̄ ‖3
∣∣∣∣∣∣ .

The gap between the two models arises from the fact
that in the restricted three-body problem the Earth-Moon
system is considered as a unique body concentrated in its
center of mass instead of a binary system.

The distance between the two systems rapidly decreases to
zero as the evaluation point is out of two disks around the
primaries. For any different mutual position of the three
primaries the picture of ∆SE is different but self-similar
up to rotation around the point B; in Fig. 2 the value of
∆SE is plotted for θ = 0.

Comparison with EM-CR3BP

Following the same procedure as before, the distance
between the CR3BPEM and the BCP is achieved. Again,
let z̄ be used to denote the complex coordinates in a
rotating reference frame and dimensional units of measure.
Reminding that the origin of the EM-synodical frame is in
the barycenter B that is revolving around the center of
mass O, the inertial coordinate Z and z̄ are linked by the
formula

Z = B + z̄eiγ2 , B = (1− µs)LSeiγ1 .
The positions of the primaries



S̄ = (S −B)e−iγ2 = −LSei(γ1−γ2)
Ē = (E −B)e−iγ2 = −µmLM
M̄ = (M −B)e−iγ2 = (1− µm)LM

and the acceleration of the particle

d2Z

dτ2
=

(
d2z̄

dτ2
+ 2iw2

dz̄

dτ
− w2

2 z̄ − w2
1(1− µs)LSei(γ1−γ2)

)
eiγ2

give the differential equation for the BCP in dimensional
EM-synodical coordinates

d2z̄

dτ2
+ 2iw2

dz̄

dτ
− w2

2 z̄ − w2
1(1− µs)LSei(γ1−γ2) =

−G
[Ms(z̄ − S̄)

‖ z̄ − S̄ ‖3
+
Me(z̄ − Ē)

‖ z̄ − Ē ‖3
+
Mm(z̄ − M̄)

‖ z̄ − M̄ ‖3
]
.

(8)

The term −w2
1(1− µs)LSei(γ1−γ2) represents the centrifu-

gal acceleration of B or, equivalently, the gravitational
influence of the Sun on the Earth-Moon system, indeed (2)
and (6) imply (1− µs)w2

1 = GMs

L3
S

. The difference between

(8) and

d2z̄

dτ2
+ 2iw2

dz̄

dτ
− w2

2 z̄ = −G
[
Me(z̄ − Ē)

‖ z̄ − Ē ‖3
+
Mm(z̄ − M̄)

‖ z̄ − M̄ ‖3

]
that describes the motion in the EM restricted problem,
gives the distance between the two models

∆EM (z̄) =‖ BCP − CR3BPEM ‖

= GMs

∣∣∣∣∣∣ (S̄ − z̄)
‖ z̄ − S̄ ‖3

− (S̄ − B̄)

‖ S̄ − B̄ ‖3
∣∣∣∣∣∣ .

The error originates because in the CR3BPEM the influ-
ence of the Sun on the spacecraft is considered as the same
influence that the Sun produces on the center B of the
rotating frame. Indeed the error vanishes whenever the
spacecraft is placed in the origin of the reference frame
and grows when it moves away, see Fig. 3.

Fig. 3. Level curves of ∆EM for θ = π/3

3. REGIONS OF PREVALENCE

We investigate the prevalence of the CR3BPs according to
which one produces the lowest error if it is considered in
place of the BCP. To this aim, once a system of coordinates
is chosen, let be defined the function

Fig. 4. Γ(θ) with θ = 0, 2/3π, 4/3π in SE and EM reference frame

∆ E(z) = (∆SE −∆EM )(z)

= G
∣∣∣∣∣∣− Me(z − E)

‖ z − E ‖3
− Mm(z −M)

‖ z −M ‖3
+
Mb(z −B)

‖ z −B ‖3
∣∣∣∣∣∣

−GMs

∣∣∣∣∣∣ (S − z)
‖ z − S ‖3

− (S −B)

‖ S −B ‖3
∣∣∣∣∣∣ .

In any point z one of the restricted models as to be
preferred according with the sign of ∆E: where ∆E < 0
the CR3BPSE provides a better approximation of the
BCP, otherwise the CR3BPEM .

Denote with Γ(θ) the zero level set of the function ∆E for
a given angle θ:

Γ(θ) := {z : ∆E(z) = 0} .
Numerical simulations show that Γ(θ) is a closed simple
curve: we refer to the two regions bounded by Γ(θ) as the
Regions of Prevalence of the two restricted problems. In
the bounded region ∆EM < ∆SE , while in the exterior
region the opposite holds. Substituting the coordinates
giving the positions of the primaries, the zero level curve
Γ(θ) is computed in SE and EM-synodical coordinates.

In Fig. 4 the zero level set of ∆E is drawn for different
choices of the angle θ and in different system of coordi-
nates. For any angle θ the Earth, the Moon as like as the
L1 and L2 Lagrangian points related to the CR3BPEM be-
long to the EM region of prevalence, while the CR3BPSE
Lagrangian points are placed in the exterior region.

4. THE COUPLED CR3BP APPROXIMATION

The coupled CR3BP concerns the approximation of the
four-body problem with the superposition of two circu-
lar restricted three-body problems, (Koon et al. (2001)).
Here the design of trajectories leaving a Lyapunov orbit
around L1 and L2 in the CR3BPSE and directed to the
vicinity of the Moon is considered: therefore, denoting

with W
(u),s
(SE),EM,i(γ) any (un)-stable manifold related to

Lyapunov orbits γ around Li in the (SE) or EM restricted



problem, the intersections of W s
EM,2(γ1) with Wu

SE,1(γ2)

and Wu
SE,2(γ2) have been exploited. According with the

prevalence regions previously defined, the Poincaré section
is set on the curve Γ(θ). The procedure to design the
transfer trajectories is the following: first the angle θ is
chosen and the curve Γ(θ) in both the synodical systems
is set. After, for a couple of Lyapunov orbits γ1, γ2,
the W s

EM,2(γ1) and Wu
SE,1,2(γ2) are computed, each in

their own coordinate frame, until the corresponding curve
Γ(θ) is encountered. The resulting Poincaré map are then
transformed into the same coordinates system and the
connection point Int is selected.

As shown in Fig. 5, for almost every Lyapunov orbits
around L2 in the EM system and every θ, the external
stable manifold W s

EM,2(γ1) invests completely the curve

Γ(θ): the resulting Poincaré map, topologically equivalent
to a circle, bounds the region B of those initial data leading
to the Moon’s region.

For our purpose the point Int has to be selected in
the set B ∩ Wu

SE,1,2. Patching together the trajectories
obtained integrating the point Int backward in time in
the CR3BPSE and forward in the CR3BPEM , it follows
an orbit that, starting from the SE-Lyapunov, after have
passed through the EM Lyapunov gateway, will go close
to the Moon.

Fig. 5. Intersection of Wu
SE,2(γ2) and W s

EM,2(γ1) with Γ(π/3)

5. THE BOX COVERING APPROACH

Using a software package called GAIO (Global Analy-
sis of Invariant Objects), see Dellnitz et al. (2000), the
four-dimensional Poincaré map is covered with box struc-
tures. A N-dimensional box B(C,R) is identified by a
center C = (C1, C2, . . . , CN ) ∈ RN and a vector of radii
R = (r1, r2, . . . , rN ) and it is defined as

B(C,R) =

N⋂
i=1

{(x1, x2, . . . , xN ) ∈ RN : |xi − Ci| < ri}

Following a multiple subdivision process, starting from a
box B0, a larger family of smaller boxes is created with
the property to cover B0: the depth d of a family denotes
the number of such subdivision iterations. Once the family
F(d) of boxes is created, the Poincaré map is therein
inserted: only those boxes of F(d) containing at least one
point of the Poincaré map are considered, the others are
neglected. Denote with P the family of boxes used for the
covering of the Poincaré map. In order to detect the points
Int, the interior region B needs to be covered as well, see
Fig. 6. The definition of the centers of the boxes used to
cover B is made ’by columns’: from the set of boxes in
P whose centers have the same (x, y)-coordinates, let be

selected the two boxes with the maximal vmax and minimal
vmin value of the v-coordinate. Then a new set of centers
{Ck = (x, y, vk, wk)}Kk=1 are defined, where vk = vmin +
k∆v and wk is obtained from the Jacobi constant. Here
∆v is twice the radius in the v-direction of the covering
boxes and K = (vmax − vmin)/∆v.

Fig. 6. Box covering of the interior region B

In the presented simulation the covering is performed
at d = 32: depending on the size of the Poincaré map
the radii of the covering boxes result to be in the range
[4 · 10−4, 2 · 10−3] EM units.

Then, for a value of the Jacobi integral in the SE system,
the Poincaré map of Wu

SE,1(γ2) or Wu
SE,2(γ2) is computed

and, using (4), it is transformed in EM synodical coordi-
nates, being θ the angle between the primaries. Finally, all
those points of the SE Poincaré map lying in one of the
boxes covering B are considered as transfer points.

6. SOME RESULTS

The existence of connection points is tested starting from
a database of 60 Lyapunov orbits in the CR3BPSE both
around L1 and L2 and 60 Lyapunov orbits around L2 in
the CR3BPEM . The Jacobi constant varies in the range
[3.0004, 3.00084] for the SE system and in the interval
[3.053, 3.177] for the EM system and 32 values of θ have
been considered.

Fig. 7 concerns transfers leaving a Lyapunov orbit around
L1: every dark sign marks a point in the intersection
B ∩ Wu

SE,1, i.e. ∆V = 0 connections. The coordinates
represent the Jacobi constant of the connection point
respectively in the SE and EM system and the angle
θ of the Poincaré section Γ(θ) where the connection is
detected. The lighter points are the projections of the
previous ones onto the coordinates planes. Starting from
one intersection, backward and forward integration in
the two CR3BP produce the complete transfer. If no
differently specified, all the evaluations are done in the
SE-synodical frame and in SE-units of measure: relations
7 and 5 provide the accelerations of the spacecraft moving
according to the Bicircular motion and CR3BP. In the
following figures the darker and the lighter lines concern
the pieces of trajectory integrated in the CR3BPSE and in
the CR3BPEM respectively. In Fig. 8 the bigger picture
depicts the orbit from a Lyapunov orbit around L2 to the



Fig. 7. Zero ∆V connections between Wu
SE,1 and W s

EM,2

Fig. 8. Example of transfer trajectory and related errors ∆SE ,

∆EM .

Moon region, while the smaller ones show the values of
∆SE(t) and ∆EM (t) evaluated along the trajectory.

The integral total ∆V =
∫ tc
t0

∆SE(t)dt +
∫ tfin

tc
∆EM (t)dt

is used as a measure of the distance between the coupled
model and the BCP. Here t0 is the last time when the
spacecraft is far from the Earth more than 2.5 times the
Earth-Moon distance and tfin is the first moment the
spacecraft is 10000 km close to the Moon, while tc denotes
the instant when the Poincaré section is crossed. Referring

Fig. 9. Example of trajectory. Analysis of the error.

to Fig. 9, in the bigger figure the dotted line remarks the
circle inside which the above integration starts, the black
circles show the position of the Moon when the spacecraft
is on the section and at the end of the travel, the black
line denotes the Poincaré section at the crossing time. In
the upper of the smaller boxes the values of ∆EM and
∆SE are plotted together, while the last graph shows the
value of the integration. Starting from t0 the error ∆SE is
integrated until the crossing moment tc, then two different
integrations are done: in the first case the error ∆EM

is considered till the final time tfin (lighter line), in the
second case again ∆SE is integrated for a short interval of
time (darker line).

A more detailed analysis and a comparison with the
trajectories designed adopting a classical Poincaré section
will be given on a longer version of the present paper.
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