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Abstract: Two-impulse trajectories as well as mixed invariant-manifold and low-thrust efficient
transfers to the Moon are discussed. Exterior trajectories executing ballistic lunar capture
are formalized through the definition of special attainable sets. The coupled restricted three-
body problems approximation is used to design appropriate first guesses for the subsequent
optimization. The introduction of the Moon-perturbed Sun-Earth restricted three-body problem
allows to formalize the idea of ballistic escape from the Earth and to take explicitly advantage
of lunar fly-by. Then, accurate first guess solutions are optimized, through a direct method
approach and multiple shooting technique.
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1. INTRODUCTION

Low energy transfers to the Moon are being studied
since the rescue of the Japanese spacecraft Hiten in 1991
Belbruno and Miller (1993). In essence, a low energy
lunar transfer reduces the hyperbolic excess velocity upon
Moon arrival, typical of a patched-conics approach. This
process is called ballistic capture, and relies on a better
exploitation of the gravitational nature ruling the transfer
problem instead of the classic Keplerian decomposition of
the solar system. The reduced speed relative to the Moon
sets the trajectory to low energy levels, which in turn
imply a reduced propellant mass needed to stabilize the
spacecraft around the Moon.

In this paper, both efficient two-impulse transfers and
the low-thrust version of the transfers described in Koon
et al. (2001) are presented, all of them starting from
the same LEO with an impulsive maneuver given by
the launcher. It is in fact possible to further reduce the
propellant necessary to send a spacecraft to the Moon by
exploiting both the simultaneous gravitational attractions
of the Sun, the Earth, and the Moon, and the high specific
impulse provided by the low-thrust engines (above 1000
seconds). Nevertheless, including the low-thrust is not
trivial, and asks for a number of issues to face. It is
of great importance, for instance, overcoming the loss of
Jacobi integral, finding subsets of the phase space that lead
to low-thrust ballistic capture (playing the separatrix-like
role of the stable manifold associated with L2 Lyapunov
orbit of the Earth–Moon system), and summarizing, using
as few parameters as possible, all the reachable orbits that
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it is possible to target with the finite thrust magnitude
available, like low lunar orbits LLOs.

The purpose of this work is therefore to formulate a sys-
tematic approach for the design of efficient pure low-energy
as well as mixed invariant-manifold low-thrust transfers to
low orbits around the Moon. Then, a comparison between
the trajectories computed and some solutions found in
literature is presented.

2. DESIGN STRATEGY

With the coupled restricted three-body problems approxi-
mation, the four-body dynamics, characterizing the low
energy lunar transfers, is decomposed into two RTBPs,
and the invariant manifolds of the Lyapunov orbits are
computed. It is possible to show that, with a suitably
chosen Poincaré section, the trajectory design is restricted
to the selection of a single point on this section Koon et al.
(2001).

The transfers studied in this work are defined as follows.
The spacecraft is assumed to be initially on a circular
parking orbit around the Earth at a height hE = 167 km;
then an impulsive maneuver, ∆vE , carried out by the
launch vehicle, places the spacecraft on a translunar trajec-
tory, performing a translunar insertion TLI. Two different
typologies of mission are investigated, with respect to the
propulsion adopted: (i) low-energy two-impulse transfers
to LLOs: after the insertion, the spacecraft flies ballisti-
cally under the dynamics of the problem until the Moon
neighborhood, where a second impulsive maneuver inserts
it on a stable low altitude orbit; (ii) low-energy low-thrust
transfers to LLOs: after the launch, the spacecraft can
only rely on its low-thrust propulsion to reach a stable
low-altitude orbit around the Moon.



2.1 The Planar Circular Restricted Three-Body Problem

The motion of the spacecraft, m3, is studied in the grav-
itational field generated by the mutual circular motion of
two primaries of masses m1, m2, respectively, about their
common center of mass. It is assumed that m3 moves in
the same plane of m1, m2 under the following equations
Szebehely (1967):

ẍ− 2ẏ =
∂Ω
∂x

, ÿ + 2ẋ =
∂Ω
∂y

, (1)

where the auxiliary function is

Ω(x, y, µ) =
1
2
(x2 + y2) +

1− µ

r1
+

µ

r2
+

1
2
µ(1− µ), (2)

and µ = m2/(m1+m2) is the mass parameter of the three-
body problem. (1) are written in a barycentric rotating
frame with nondimensional units: the angular velocity of
m1, m2, their distance, and the sum of their masses are all
set to the unit value. It is easy to verify that the primary
of mass 1 − µ, is located at (−µ, 0), whereas the smaller
primary µ, is located at (1 − µ, 0); thus, the distances
between m3 and the primaries are:

r2
1 = (x + µ)2 + y2, r2

2 = (x + µ− 1)2 + y2. (3)
For fixed µ, the Jacobi integral reads

J(x, y, ẋ, ẏ) = 2Ω(x, y, µ)− (ẋ2 + ẏ2), (4)
and, for a given energy C, it defines a three-dimensional
manifold

F (C) = {(x, y, ẋ, ẏ) ∈ R4|J(x, y, ẋ, ẏ)− C = 0}, (5)
foliating the four-dimensional phase space.

3. EARTH ESCAPE STAGE

If a value of Jacobi constant in the SE model, CSE , is
suitably chosen, there exists a unique Lyapunov orbit
about both L1 and L2, labeled γ1 and γ2, respectively.
Assuming the energy values CSE � C2 such that both
γ1 and γ2 exist, the Hill’s regions are opened at both L1
and L2. Without any loss of generality, the Earth escape
stage is constructed considering the dynamics around L2;
using L1 instead of L2 is straightforward. The stable
and unstable manifolds associated with γ2, W s(γ2) and
Wu(γ2), are computed starting from the Lyapunov orbit
until a certain surface of section is reached.

Aiming at exploiting the structure of both W s(γ2) and
Wu(γ2), two surfaces of section are introduced to study
their cuts at different stages. Section SA, making an
angle ϕA (clockwise) with the x-axis and passing through
the Earth, is considered to cut W s(γ2), whereas section
SB , inclined by ϕB (counterclockwise) on the x-axis and
passing through the Earth, is assumed for Wu(γ2).

Candidate trajectories for Earth–Moon transfers are non-
transit orbits close to both W s(γ2) and Wu(γ2). This
property is wanted since the existence of W s(γ2) and
Wu(γ2) has to be exploited, although the transfer orbit
does not exactly lie on any invariant subset. Let Γ̇s

2 be
the set of points in the (r2, ṙ2)-plane that are enclosed by
∂ Γs

2, and Γ̄s
2 the closed set made up of ∂ Γs

2 ∪ Γ̇s
2. Points

on Γ̄s
2 have to be avoided as they lead to either transit or

asymptotic orbits. On the contrary, all the points that lie
on

l = {(r2, ṙ2) ∈ SA, (r2, ṙ2) /∈ Γ̄s
2|r2 = RE + hE} (6)

(a) Initial transfer condition.

(b) ∂ Γs
2, Γ̇s

2, l, l′ sets, and point P = l ∩ l′.

Fig. 1. Earth escape trajectory performed with a tangential ∆vE

maneuver and its associated section point P .

are translunar candidate orbits as they intersect the initial
parking orbit (RE is the radius of the Earth). This
intersection occurs in the configuration space only, as the
initial parking orbit and the translunar trajectory have
two different energy levels.

The pair {CSE , ϕA} uniquely defines the curve ∂ Γs
2 on SA:

CSE stands for the orbit γ2, whereas ϕA defines the surface
of section SA to cut the first intersection of W s(γ2). Thus,
{CSE , ϕA} are used to define the first guess Earth escape
stage. In order to obtain efficient transfer trajectories, the
lowest possible initial instantaneous maneuver, ∆vE , is
searched. It is necessary to define its components: a first
contribution to the ∆vE amount is related to the radial
term ∆vr, while the second tangential contribution ∆vt

is needed to fill the gap ∆C between the energy of the
initial parking orbit, CE , and CSE (i.e. ∆C = CE −CSE).
It is possible to show that ∆v(∆C,ϕA) = ∆vt(∆C) +
∆vr(ϕA), and it is even possible to lower ∆vr to zero
by properly tuning ϕA. This approach leads to initial
tangential maneuvers, i.e. the initial ∆vE is aligned with
the velocity of the circular parking orbit around the Earth.
The search is therefore restricted to the point P ∈ SA



defined by P = l ∩ l′, where l′ is the set of points having
zero radial velocity with respect to the Earth

l′ = {(r2, ṙ2) ∈ SA, (r2, ṙ2) /∈ Γ̄s
2|ṙ2 = 0}. (7)

Point P does not exactly lie on the stable manifold (but
outside), and can be found sufficiently close to W s(γ2) by
suitably tuning ϕA (see Fig. 1(b)). In particular, points
P ′ ∈ SA such that ‖P ′ − P‖ ≤ ε are also taken into
account, where ε is a certain prescribed distance.

The set labeled ESE , ESE ∈ SB , stands for the set of orbits
close to Wu(γ2) whose pre-image E−1

SE , E−1
SE ∈ SA, is made

up by P ′ points.

3.1 The Moon-Perturbed Sun-Earth Restricted Three-Body
Problem

When the gravitational attraction of the Moon is taken
into account, (1) are augmented aiming at introducing
the dynamics of the Moon in an autonomous fashion,
leading to the formulation of the bicircular restricted four-
body problem, BRFBP (see Fig. 2(a)). The dynamical
system moves from the fourth order to the fifth one.
Some assumptions are taken into account, recalling that
the orbits of the primaries show low eccentricity values
(≈ 0.01, ≈ 0.04), and the Moon inclination with respect
to the ecliptic plane is little (≈ 5 deg).

Assuming all the hypothesis written above, the planar
equations of motion are:

ẍ− 2ẏ =
∂ΩM

∂x
, ÿ + 2ẋ =

∂ΩM

∂y
, θ̇ = ωM (8)

where the subscripts denote the partial derivative of the
auxiliary function

ΩM (x, y, θ) = Ω(x, y, µSE)+
mM

rM
− mM

ρ2
M

(x cos θ + y sin θ).

(9)
The quantity Ω(x, y, µSE) stands for the classic CRTBP
potential expressed by (2), while the remaining part rep-
resents the gravitational perturbation of the Moon.

The dimensionless physical constants introduced to de-
scribe the Moon influence are in agreement with those of
the SE model. Thus, the distance between the Moon and
the Earth is ρM = 2.5721 · 10−3, the mass of the Moon is
mM = 3.6942 · 10−8, and its angular velocity with respect
to the SE rotating frame is ωM = 1.2367·101. The location
of the Moon is therefore at (1− µSE + ρM cos θ, ρM sin θ),
such that:

r2
M = (x− 1 + µSE − ρM cos θ)2 + (y − ρM sin θ)2. (10)

According to the differential (8), the system does not
admit the existence of any libration point or integral of
motion. Anyway, as the Moon can be considered as a small
perturbation of the Sun–Earth model, a qualitative global
analysis about the motion of the spacecraft is proposed,
assuming the restricted four-body model as a perturbation
of the invariant objects of the classic RTBP. If the points
belonging to the escape set ESE are backwards integrated
under the dynamics associated with (8), the topology of
their trajectories in the configuration space is only slightly
and negligible different. The main variations appear asso-
ciated with the pre-image set E−1

SE . If the trajectories pass
nearby the Moon, the points P ′ ∈ SA show almost the

(a) Moon-perturbed Sun–Earth RTBP.

(b) Sun-perturbed Earth–Moon RTBP.

Fig. 2. Mathematical models to described the physics of the

problem.

same phase-space coordinates (r2, ṙ2) as before, while the
tangential velocity decreases significantly, with respect to
the classic Sun–Earth PCRTBP computation. This means
that a reduced instantaneous velocity change ∆vE is now
required to place the translunar trajectory on F (CSE) ∩
E−1

SE .

4. LOW-THRUST AND ATTAINABLE SETS

To model the controlled motion of m3 under both the
gravitational attractions of m1, m2, and the low-thrust
propulsion, the following differential equations are consid-
ered:

ẍ− 2ẏ =
∂Ω
∂x

+
Tx

m
, ÿ + 2ẋ =

∂Ω
∂y

+
Ty

m
, ṁ = − T

Isp g0
,

(11)
where T =

√
T 2

x + T 2
y is the thrust magnitude, Isp the spe-

cific impulse of the engine and g0 the gravitational acceler-
ation at sea level. The ballistic motion (1) is represented by
a fourth-order system, while the controlled motion (11) is
described by a fifth-order system of differential equations.
Continuous variations of the spacecraft mass, m, are taken
into account when low-thrust propulsion is considered.

The thrust law T(t) = {Tx(t), Ty(t)}>, t ∈ [ti, tf ], in (11)
is not given, but rather in this approach it represents
an unknown that is found when the optimal control



problem is solved (ti and tf are the initial and final
times, respectively). Let yi be a vector representing a
generic initial state, i.e. yi = {xi, yi, ẋi, ẏi,mi}>, and let
φT(τ)(yi, ti; t) be the flow of system of (11) at time t,
starting from (yi, ti) and considering the thrust profile
T(τ), τ ∈ [ti, t]. The latter has to be taken within
proper bounds that are typically given by technological
constraints. This condition usually reads T (t) ≤ Tmax,
where Tmax is the maximum available thrust magnitude.
With this notation, it is possible to define the generic point
of a tangential low-thrust trajectory through

y(t) = φT(yi, ti; t), (12)

where T = T (v/v), v =
√

ẋ2 + ẏ2, v = {ẋ, ẏ}>. (12)
represents the flow of the differential system governed by
(11), when constant tangential thrust of magnitude T is
considered. With given T , tangential thrust maximizes the
variation of Jacobi energy, which is the only property that
has to be dealt with when designing trajectories in the
RTBP. The low-thrust orbit, at time t, can be expressed
as

γT(yi, t) = {φT(yi, ti; τ)|τ < t}, (13)
where the dependence on the initial state yi is kept. The
attainable set, at time t, can be defined as

AT(t) =
⋃

yi∈Y
γT(yi, t), (14)

where Y is a domain of admissible initial conditions.

4.1 Moon Ballistic Capture Stage

Two-impulse transfers to the Moon are defined as follows.
The spacecraft is assumed to be initially on a parking
orbit about the Earth with given eccentricity and perigee
altitude. The transfer begins when the spacecraft is at the
perigee of this orbit by means of an impulsive maneuver
(provided by the launcher). Then the spacecraft flies
ballistically under the RTBP dynamics until it reaches the
Moon neighborhood, where a second impulsive maneuver
is required to insert the spacecraft into a stable prescribed
orbit around the Moon. The transfer terminates when the
spacecraft is at the periapsis of this orbit.

The initial orbit is a trajectory belonging to the set ESE ,
whereas the second part is defined using a suitable attain-
able set in the EM model. This set is made up by ballistic
orbits that are integrated backward, i.e. considering the
thrust magnitude T = 0. More specifically, the final state
of the transfers (i.e., the periapsis point of the orbit about
the Moon) is function of the argument of periapsis and
of the final tangential ∆vM impulsive maneuver required
to place the spacecraft into a stable lunar orbit, i.e. yf =
yf (ωM ,∆vM ), see Fig. 3(a).

According to this approach, the domain of admissible final
states becomes
YM = {yf (ωM ,∆vM )|ωM ∈ [0, 2π],∆vM ∈ [0,+∞]},

(15)
and the attainable set, for some t ≥ 0 (i.e. −t is a backward
integration), containing ballistic capture trajectories with
impulsive stabilization is

AM
B (−t) =

⋃
yf∈YM

γB(yf (ωM ,∆vM ),−t). (16)

(a) Sample impulsive capture trajectory.

(b) ESE and ÃM
B (−t) sets.

Fig. 3. The first guess impulsive capture solution as the transfer

point BM
−t = ESE ∩ ÃM

B (−t), the latter reported on section SB

in Fig. 3(b).

Each generic Moon capture orbit written in (16), at time
−t, can be expressed as

γB(yi,−t) = {φB(yi, ti;−τ)| − τ > −t}, (17)

where B = T (v/v), v =
√

ẋ2 + ẏ2, v = {ẋ, ẏ}>, and
assuming T = 0. Since the first part of the transfer is
defined on ESE , the transfer points, if any, that generate
two-impulse transfers are contained in the set

BM
−t = ESE ∩ ÃM

B (−t). (18)
Once again, the transformation M is required to map
AM

B (−t), computed in the EM model, into ÃM
B (−t), de-

fined in the SE model, see Fig. 3(b). At this stage just
first guesses are defined, states with small, tolerable mis-
matches can be admitted in BM

−t as the discontinuities are
spread in the subsequent optimization step.

4.2 Moon Low-Thrust Capture Stage

Low-energy, low-thrust transfers to the Moon, have the
same initial and final conditions at the Earth and the
Moon as defined in the previous section. The initial orbit is
a trajectory belonging to the set ESE , whereas the second
part is defined using a suitable attainable set. This is made
up by tangential low-thrust orbits that are integrated



(a) Sample low-thrust capture trajectory.

(b) ESE and ÃM

T
(−t) sets.

Fig. 4. The first guess low-thrust capture solution as the transfer

point T M
−t = ESE ∩ ÃM

T
(−t), the latter reported on section SB

in Fig. 4(b).

backward. More specifically, as both eccentricity and apsi-
dal altitude are prescribed, the final state of the transfers
(i.e. the periapsis point of the orbit about the Moon) is
function of the argument of periapsis, i.e. yf = yf (ωM ),
as shown in Fig. 4(a). The domain of admissible final states
therefore is

YM = {yf (ωM )|ωM ∈ [0, 2π]}, (19)
and the attainable set, for some t ≥ 0 (i.e. −t is a back-
ward integration), containing low-thrust, ballistic capture
trajectories is

AM
T

(−t) =
⋃

yf∈YM

γT(yf (ωM ),−t). (20)

Since the first part of the transfer is defined on ESE , the
transfer points, if any, that generate low-energy, low-thrust
transfers are contained in the set

T M
−t = ESE ∩ ÃM

T
(−t). (21)

The transformation M is required to map AM
T (−t), com-

puted in the EM model, into ÃM
T (−t), defined in the SE

model, as shown in Fig. 4(b). It is worth mentioning that
first guess solutions are being generated in this step. These
preliminary solutions have to be later optimized in a four-
body context. Thus, small discontinuities can be tolerated

when looking for the transfer point. This means that it is
possible to intersect two states such that ‖yA − yE‖ ≤ ε,
where yE ∈ ESE , yA ∈ ÃM

T
(−t), and ε is a prescribed

tolerance. The greater ε is, the higher number of first guess
solutions is found; however, ε should be kept sufficiently
small to permit the convergence of the subsequent opti-
mization step.

5. TRAJECTORY OPTIMIZATION

Once feasible and efficient first guess solutions are achieved,
combining attainable sets with Earth-escape sets, an opti-
mal control problem is stated in the BRFBP framework.
The model used to take into account low-thrust propulsion
and the gravitational attractions of all the celestial bodies
involved in the design process (i.e. the Sun, the Earth, and
the Moon) is

ẍ− 2ẏ =
∂ΩS

∂x
+

Tx

m
, ÿ + 2ẋ =

∂ΩS

∂y
+

Ty

m
,

θ̇ = ωS , ṁ = − T

Isp g0
.

(22)

This is a modified version of the classic bicircular four-
body problem Simó et al. (1995) (see Fig. 2(b)) and, in
principle, incorporates the perturbation of the Sun into the
Earth–Moon PCRTBP described by (1). The four-body
potential ΩS reads

ΩS(x, y, θ) = Ω(x, y, µEM ) +
mS

rS
− mS

ρ2
S

(x cos θ + y sin θ).

(23)
The dimensionless physical constants introduced to de-
scribe the Sun perturbation are in agreement with those of
the EM model. Thus, the distance between the Sun and the
Earth–Moon barycenter is ρS = 3.8878 · 102, the mass of
the Sun is mS = 3.2890 ·105, and its angular velocity with
respect to the EM rotating frame is ωS = −9.2518 · 10−1.
The Sun is located at (ρS cos θ, ρS sin θ), and therefore the
Sun-spacecraft distance is calculated as

r2
S = (x− ρS cos θ)2 + (y − ρS sin θ)2. (24)

This low-thrust version of the BRFBP is represented by
the sixth-order system of differential (22).

The optimal control problem, OCP, is then transcribed
into a nonlinear programming, NLP, problem using a di-
rect approach. This method, although suboptimal, gen-
erally shows robustness and versatility, and does not re-
quire explicit derivation of the necessary conditions of
optimality. Moreover, direct approaches offer higher com-
putational efficiency and are less sensitive to variation of
the first guess solutions Betts (1998). Furthermore, a mul-
tiple shooting scheme is implemented, where the BRFBP
dynamics presented by (22) is forward integrated within
N−1 intervals (in which [ti, tf ] is uniformly split), i.e. the
time domain is divided in the form ti = t1 < · · · < tN = tf ,
and the solution is discretized over the N grid nodes. The
continuity of position, velocity and mass is imposed at
their ends Enright and Conway (1992), in the form of
defects ηj = v̄j − vj+1 = 0, for j = 1, . . . , N − 1. The
quantity v̄j stands for the result of the integration, i.e.
v̄j = φ(vj ,p, t), tj ≤ tj+1, and is made up of state
variables and control variables (i.e. vj = {yj ,Tj,k}>, for
k = 1, . . . ,M−1). The control law T(t) is described within
each interval by means of cubic spline functions.



Table 1. Two-impulse transfers and low-energy
low-thrust transfers to LLOs. A set of impul-
sive solutions found in literature is reported.

Type ∆vi [m/s] ∆vf [m/s] ft [adim.] ∆t [days]

sol.1 3169 – 0.675 103

sol.2 3143 650 0.724 88

Yag 3137 718 0.730 44

WSB 3161 677 0.729 90–120

Hoh 3143 848 0.742 5

6. OPTIMIZED TRANSFER SOLUTIONS

In this section the transfer solutions arising from the op-
timization process are presented. In section 2 two families
of trajectories are discussed, according to different types
of propulsion system.

6.1 Low Lunar Orbit Trajectories

Optimal two-impulse and low-energy low-thrust solutions
are presented. These transfers start from a circular parking
orbit at an altitude of hE = 167 km around the Earth, and
end at circular orbit around the Moon, at an altitude of
hM = 100 km. The results are shown in table 1 as follows:
the first sol.1 correspond to the low-energy low-thrust
transfer, while solution sol.2 represents a two-impulse low-
energy transfer. Then, solutions below the horizontal line
are some reference impulsive transfers found in literature.

Table 1 is organized as follows: the second column ∆vi

stands for the initial impulsive maneuver that inserts
the spacecraft onto the translunar trajectory. For the
solutions computed in this paper, they are a direct output
of the optimization process, described in section 5. The
third column ∆vf represents the final impulsive maneuver
that permits a stable permanent capture into a circular
parking orbit around the Moon. This comes out from
the optimization step for sol.2, it is not present for the
low-thrust transfers whereas for the reference solutions
this term takes into account all the impulsive maneuvers
necessary to carry out the transfers except for ∆vi.

The fourth column ft represents the overall mass fraction
necessary to complete the Earth–Moon transfers. Even
if for low-energy low-thrust solutions, according to the
design of the Earth escape stage described in section 3,
the initial ∆vi is given by the launch vehicle, for a sake of
a fair comparison, the cost of this maneuver is considered,
as written below:

ft =
mp

mi
=

[
1− exp

(
− ∆vi

Iht
sp g0

)]
+

1
mi

∫ tf

ti

T (t)
I lt
sp g0

dt,

(25)
where Iht

sp = 300 s and I lt
sp = 3000 s are assumed as the

specific impulse related to high-thrust chemical engines
and low-thrust electrical engines respectively. Finally, the
last column on the right stands for the transfer time.

Table 1 shows that sol.1 offers the lowest value of the
overall mass consumption (see ft). This happens for two
reasons: first the fact that the low-thrust, I lt

sp, is one order

(a) Optimized two-impulse trajectory, inertial geocentric
reference frame.

Fig. 5. Optimized two-impulse transfer to a low orbit around the

Moon, corresponding to solution 2 in table 1.

of magnitude greater than Iht
sp . Second, the first guess

solutions exploit deeply the dynamics of the RTBPs where
they are designed, and later of the Earth–Moon BRFBP
where they are optimized. Moreover, these trajectories
take explicitly advantage of the initial lunar flyby. The
latter can be seen as a kind of aid in the translunar
orbit insertion, as it reduces the ∆vi required for that
maneuver. The two-impulse trajectory corresponding to
sol.2, shown in Fig. 5, acknowledges these remarks, as it
shows the lowest global ∆v = 3793 m/s (with travel time
∆t = 88days).

7. CONCLUSIONS

In this paper two different technique to design Earth-
to-Moon transfers have been investigated. The optimized
solutions reveal to be efficient, both in terms of ∆v and
flight time.
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