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Abstract: This work deals with numerical investigations of the phase space of the restricted three body 
model. The Sun-Jupiter-Asteroid system is considered and the fast Lyapunov indicator (FLI) is used as a 
tool to examine various types of orbits on which the infinitesimal mass can undergo. The FLI is 
computed on given grids of initial conditions and the obtained charts are analyzed. The chaotic zones and 
the libration regions associated with the mean motion resonances of low order are clearly distinguished. 
Their size is discussed as a function of the resonance order and the parameters entering into the 
perturbing function. 
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1. INTRODUCTION 

In the last two decades, various numerical methods have been 
applied to celestial mechanics to distinguish between regular 
and chaotic motions. Depending on the mathematical model, 
the information offered and the amount of computation, each 
method has its own advantages and disadvantages. We shall 
briefly recall some widely used tools in investigating the 
dynamics of non-integrable systems. Thus, the frequency 
map analysis (Laskar, 1990; Laskar et al., 1992) has been 
used for studying small body dynamics (Nesvorný and 
Ferraz-Mello, 1997; Celletti et al., 2004); the method of twist 
angles (Contopoulos and Voglis, 1997) has been tested on the 
standard map and compared with other methods of analysis 
(Froeschlé and Lega, 1998); the fast Lyapunov indicator 
(Froeschlé et al., 1997a, 1997b) has been investigated in 
detail and applied to various dynamical problems; the 
MEGNO technique (Cincotta and Simó, 2000) has been 
utilized to perform a stability analysis of extra solar planets 
(Goździewski et al., 2001; Goździewski, 2003); the time 
series given by the intervals between successive crossing of a 
given plane of section have been used to reconstruct the 
phase space in the restricted three body problem (Gidea et al., 
2007).  

In this paper, we use the fast Lyapunov indicator (FLI) in 
order to perform a cartographic study of a given portion of 
the phase space of the restricted three body problem.  
Introduced by Froeschlé et al. (1997a, 1997b), this tool is 
easy to implement, cheap in computational time and very 
sensitive for the detection of weak chaos and for 
distinguishing between regular resonant orbits and regular 
non resonant ones. These features have been unveiled by 
testing it on symplectic mappings (Froeschlé and Lega, 
2000a; Lega and Froeschlé, 2001) as well as on continuous 
flows (Fouchard et al., 2002). Moreover, it was shown that 
FLI is a very useful numerical tool for revealing the geometry 
of resonances (the so-called Arnold’s web), for detecting the 
transition between the stable Nekhoroshev’s regime and the 

diffusive Chirikov’s one (Froeschlé et al., 2000b; Guzzo et 
al., 2002; Todorović et al., 2008) and even for detection of 
diffusion along resonances (Arnold’s diffusion) (Lega et al., 
2003, 2008; Froeschlé et al., 2006; Todorović et al., 2008). 
These topics have been investigated in the framework of 
quasi-integrable Hamiltonian systems. In this sense, some 
model systems have been carefully chosen.     

The FLI tool has been directly utilized to study the stability 
of extra solar planets (Pilat-Lohinger, 2003), to solve 
spacecraft preliminary trajectory design problems (Villac, 
2008), to investigate the dynamics associated to nearly 
integrable dissipative systems (Celletti, 2008).  

In this paper, we use the FLI tool to investigate the phase 
space of the restricted three body problem and we focus on 
the Sun-Jupiter-Asteroid system. We recall that FLI has been 
first applied to asteroidal motion.  Froeschlé et al. (1997b) 
integrated a model consisting of the four giant planets and 
Sun and studied the dynamics of the asteroids orbiting 
between the 3/1 and 5/2 Kirkwood gaps. Here, we implement 
the FLI tool for the elliptic restricted three body model (the 
case Sun-Jupiter-infinitesimal mass) and prove that FLI 
reveals after a very short computational time the entire 
structure of the phase space (the regular and chaotic regions, 
the geometry of resonances, the libration regions).  

This analysis is relevant in the study of the global dynamics 
in the asteroid belt. This topic, with a particular attention on 
the mechanisms of chaotic diffusion, is extensively studied in 
literature (see for example the book of Morbidelli (2002) and 
the review article by Tsiganis (2008)). The theories of chaotic 
diffusion aim to predict the long-term behaviour of 
ensembles of asteroids, rather than individual orbits. In this 
sense, the Lyapunov time, the size and shape of the chaotic 
regions and the diffusion coefficients are the main parameters 
needed to understand the long-terms effect of chaotic 
diffusion in the asteroid belt. To compute them, analytical 
models and numerical studies of two-body mean motion 
resonances of different order have been accomplished 



 
 

     

 

(Holman and Murray, 1996; Murray and Holman, 1996; 
Morbidelli, 2002; Tsiganis, 2008; and references therein).  

Here, a numerical study is given in the framework of the 
planar elliptic restricted three body problem in order to give 
an estimate of the size and the shape of the chaotic regions. 
We integrate the variational equations along with the 
equations of motion for a set of 500 x 500 test particles 
placed on a regular grid in the plane (a, e), where the semi-
major axis a range from  1.5 AU to 6 AU, while the 
eccentricity ∈e [0, 0.5]. The total time span covered by our 
integration has a length of 8400 yr (700 periods of Jupiter). 
On the obtained dynamical maps, the structure of the above 
portion of the phase space is clearly displayed.  

In contrast with other numerical methods, for example with 
the classical method for detecting chaotic behaviour in 
asteroid belt, which is that of the Lyapunov exponents, the 
FLI is computationally cheap and robust. Here, the 
integration time is of 103-104 yr. To compute a dynamical 
map using the maximum Lyapunov exponent the integration 
time is of the order of millions of yr (Tsiganis, 2008).   

2. BASIC FORMULATION 

In this section we recall the definition of the FLI and we 
describe the techniques utilized to integrate the equations of 
motion and the variational equations.  

2.1 The fast Lyapunov indicator (FLI) 

Let us consider the dynamical system 
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where F is a continuously differentiable function. Given an 
initial condition X(0)∈Rn, let us consider the evolution 
V(t)∈Rn of an initial vector V(0)∈Rn of norm 1, obtained by 
integrating the variational equations 

,))(( VtX
X
F

dt
dV

∂
∂

=     (2) 

where X(t) is the evolution of X(0).  

Then, the maximum Lyapunov exponent is defined by  
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Numerically, one works on finite times. Thus, one estimates 
MLE by computing the Lyapunov characteristic indicator 
defined by    
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at a large time t .  

The fast Lyapunov indicator is defined by (Froeschlé and 
Lega, 2000a; Lega and Froeschlé 2001) 
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The computation of FLI on a relatively short time is enough 
to discriminate between chaotic and regular orbits. The FLI 
of a regular orbit increases linearly, while for a chaotic orbit, 
the FLI increases exponentially. Moreover, FLI may be used 
to discriminate among regular motion between non resonant 
and resonant orbits. Because of the differential rotation, the 
norm of the vector V, asymptotically grows as attV ≅||)(|| , 
the coefficient a depending on the nature of invariant curve 
(torus or libration island). As against the MLE, there is a 
disadvantage. Namely, FLI depends on the initial conditions 
and if the system is Hamiltonian, on the choice of the 
canonical variables. But, once some reference orbits have 
been computed for which the chaotic (or regular) nature has 
been determined, the FLI allows the investigation of a large 
number of orbits.  

2.2 The restricted three body problem 

The three-body problem simplified by setting one mass to 
zero is widely known as the restricted three-body problem. In 
this case the equations for the two primaries S (Sun) and J 
(Jupiter) decouple, so that their motion is Keplerian. 
According to the value of the eccentricity of their orbits we 
speak of the circular or elliptic problem. Here we consider the 
elliptic problem.   

We define our system of units such that G (mS+mJ)=1, where 
G denotes the constant of gravitation, mS the mass of the Sun, 
mJ  the mass of Jupiter. Let us introduce the notation 

41054.9)/( −⋅=+== JSJJ mmmGmμ . (6)    

Then, the heliocentric equations of motion of Jupiter and the 
infinitesimal body are 
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where Jrr  and rr are their position vectors relative to the Sun. 
We have numerically integrated the above equations using as 
starter a single step method (Runge-Kutta), while a 
symmetric multistep method of 12th order (Quinlan and 
Tremaine, 1990) performs most of the propagation. For the 
corresponding variational equations, we have utilized again 
the Runge-Kutta method. For each initial condition, the total 
time span covered by the integration has a length of 8400 yr 
(700 periods of Jupiter). The computations for a longer time 
(over 1000 periods of Jupiter) did not change the result 
significantly, therefore we used a shorter computation time 
for the whole analysis. The initial conditions have been 
chosen such that the second primary (Jupiter) describes an 
elliptic motion with eccentricity eJ =0.048 and at time t=0, 
Jupiter is at perihelion. We have utilized a Cartesian 
coordinate system centred on the Sun with the x axis pointing 
towards the perihelion of Jupiter. 

We suppose the massless body moves in a coplanar 
heliocentric elliptic orbit perturbed by Jupiter. Its initial 



 
 

     

 

conditions are given once the semi-major axis a (in AU), the 
eccentricity e, the argument of perihelion ω (the angle 
between the perihelion line and the x line) and the mean 
anomaly M are prescribed. 

In order to exemplify the behaviour of FLI for different kind 
of orbits, we plotted the evolution of the values of FLI for 
four orbits: O1 (regular orbit), O2 (regular resonant orbit), O3 
(weak chaotic orbit) and O4 (strong chaotic orbit) during 
1000 periods of Jupiter (see Fig. 1). The orbits correspond to 
the following initial conditions: O1: a=2.43AU, e=0.15, ω=0, 
M=0; O2: a=2.49 AU, e=0.15, ω=0, M=0; O3: a=2.53 AU, 
e=0.15, ω=0, M=0; and O4: a=4.7 AU, e=0.15, ω=0, M=0. 
The regular orbit O1 is close to the 3:1 resonance, O2 is in the 
libration region of the 3:1 resonance, O3 is on the separatrix 
of the 3:1 resonance, while O4 is located in the unstable 
region (see Fig. 3A). For the regular orbits O1 and O2, FLI 
increases linearly. The FLI of the chaotic orbits O3 and O4 
increases exponentially, but with different rates. 

   

Fig. 1. Evolution of FLI as a function of lg(t) for the orbits: 
O1 (regular orbit), O2 (regular resonant orbit), O3 (weak 
chaotic orbit) and O4 (strong chaotic orbit). The unit of time 
is the period of Jupiter   

3. RESULTS 

In this Section we describe numerically the structure of a 
given portion of the phase space of the planar elliptic 
restricted three body problem (PERTBP) by computing 
dynamical maps, such as the ones presented in Fig. 3. In 
order to give a theoretically based interpretation to our 
numerical analysis we recall first some important definitions 
and analytical results.   

The phase space of the PERTBP is four dimensional. Thus, 
from a theoretical point of view, to describe a portion of it, a 
dense network of points covering a subset of R4 should be 
investigated. However, since our model is a quasi-integrable 
Hamiltonian system, we resort to the space of the actions.     

In the case of quasi-integrable Hamiltonian systems having a 
non-degenerate integrable part, the KAM theorem (see for 
example Celletti and Chierchia (2006) for a recent 

description of the state of the art of the theory) assures the 
persistence of invariant tori carrying motion with diophantine 
frequencies, provided the perturbations are small enough. In 
other words, the non-degenerate integrable approximation H0 
gives a foliation of the phase space in invariant tori, the 
actions being constants and the angles circulating linearly 
with time. When a small perturbation ε H1 is added, the KAM 
theorem ensures that some invariant tori with diophantine 
frequencies continue to be invariant for the complete 
Hamiltonian H0+ εH1. The size ε determines which tori 
continue to be invariant among all the unperturbed ones with 
diophantine frequencies. 
Clearly, the integrable part of the PRTBP, namely the two 
body problem is highly degenerate and the hypotheses of the 
KAM theorem are not satisfied. For this reason the PRTBP 
exhibit very complicated dynamics. In the phase space, we 
identify: regular regions, chaotic areas and resonant regions 
with its libration and chaotic zones.        

Let us recall now the Hamiltonian and the canonical variables 
of the planar restricted three body problem. With our choice 
of dimensions and the Cartesian coordinate system, the 
modified Delaunay variables are  
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The autonomous Hamiltonian has the form  
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where JJn λ&=  is the mean motion of Jupiter, λJ is the mean 
longitude and ΛJ is the conjugate action corresponding to 
Jupiter. The disturbing function f, also depends on the 
constant elements of Jupiter’s orbit (for a detailed description 
of the perturbation theories the reader is referred to the books 
of Murray and Dermott (1999) and Ferraz-Mello (2007)). The 
integrable part of H is degenerate. The angle λ is non-
degenerate, while ω is degenerate. 

Now, we recall that the resonances  

Zqppqp J ∈=−+ ,,0)( λλ &&    (10) 

are called mean motion resonances. q is the order of 
resonance and determines its strength. It is known that 
asteroids can develop chaotic motion as a result of resonant 
perturbations, exerted by the major planets. The asteroid-
Jupiter mean motion resonances of low order (2 ≤ q ≤ 4) 
force the resonant asteroids to become planet crossers on a 
short timescale (of order of a few million years), while in 
mean motion resonances of moderate order (5 ≤ q ≤ 7-9) the 
times required to become a planet crosser are much longer 
(from tens of millions of years to of order 1 Gyr) (see 
Morbidelli (2002)).  

In order to investigate numerically the topology of the phase 
space, we proceeded as follows: in the domain 0 ≤ e ≤ 0.5,  
1.5 AU ≤ a ≤ 6 AU, of the action plane (Λ, Ω) we considered 



 
 

     

 

a grid of 500 x 500 equidistant initial conditions. The choice 
of initial angles was: A) ω=0, M=0;  B) ω=90, M=0;  C) 
ω=180, M=0; D) ω=60, M=0; E) ω=-60, M=0; For each 
point on the grid we calculated the final value of the 
logarithm of FLI for 700 periods of Jupiter. The results are 
reported below (Fig. 3: A, B, C, D and E), where the grey 
scale is used in such a way that white colour corresponds to 
chaotic orbits, whereas the darker colour is, the more stable 
the orbit is.  

Moreover, we represented the distribution of the main belt 
and Trojans asteroids (Fig. 2) using the osculating semi-
major axis and eccentricity, in order to display the location of 
the mean motion resonances with Jupiter. We recall the 
location of some low order resonances: 4:1 (a=2.06 AU); 3:1 
(a=2.5AU); 5:2 (a=2.82 AU); 7:3 (a=2.95 AU); 2:1 
(a=3.277 AU); 7:4 (a=3.58 AU); 5:3 (a=3.7 AU); 3:2 
(a=3.9 AU); 1:1 (a=5.2 AU).  

Figs. 3 A, B, C, D and E are in a good agreement with the 
analytical and numerical studies on the global dynamics of 
asteroid belt (Murray and Dermott, 1999; Tsiganis, 2008; 
Morbidelli, 2002; and references therein). Analysing these 
maps we may conclude the followings: Depending on the 
initial proper elements a, e, ω, the infinitesimal mass can 
undergo chaotic or regular motions.  

The stability region, located between 1.5 AU and 3.2 AU is 
clearly distinguished on each map. Moreover, the maps 
computed for ω=60 and ω=-60 (Figs. 3 D, E) show the 
regular zones associated with 1:1 jovian resonance.  

The strong chaotic motions arise as a consequence of the 
resonance overlap criterion. This criterion was discussed by 
Wisdom (1980). One could consider the phase space as being 
made up of a succession of resonances, each independent of 
the others and having its own librational and chaotic regions, 
as in the case of the perturbed pendulum. An obvious 
example is the sequence of the first order interior resonances 
of the form p+1:p.  Since each resonance has a well-defined 
width in semi-major axis, and since the separation of adiacent 
resonances becomes smaller as the perturber is approached, 
there will come a point at which these overlap (for example 
the resonances: 4:3 (a=4.29AU); 5:4 (a=4.48AU); 6:5 
(a=4.6AU) etc.) As a consequence, we would expect a 
cleared zone in the asteroid belt beyond 4.3 AU. This is in 
good agreement with the observations (see Fig. 2). The 
chaotic zone predicted by the above described overlap 
criterion is obtained in each picture. For a ≥ 4.3 a large white 
zone, whose shape depends on ω, is obtained by numerical 
integration.   

The stability region is crossed by a series of ‘V’-shaped 
layers of various sizes. These layers correspond to the mean 
motion resonances of low order (4:1 (a=2.06 AU); 3:1 
(a=2.5AU); 5:2 (a=2.82 AU); 7:3 (a=2.95 AU); 2:1 
(a=3.277 AU); 7:4 (a=3.58 AU); 5:3 (a=3.7 AU); see also 
the Fig. 2). Moreover, between 2.5 AU and 3.27 AU, we can 
distinguish very thin white lines which for high eccentricity 
overlap with the mean motion resonance of low order. These 
lines correspond to moderate-order mean motion resonances.  

From a mathematical point of view, the dynamics inside 
mean motion resonances can be explained by analogy to 
perturbed pendulum. In the pendulum case the phase space 
has two regions, the libration and the circulation zones, 
separated by separatrix. When the perturbing function is 
taken into account the separatrix disappears. It place is taken 
by a chaotic region, whose size depends on the perturbation.  

For each mean motion resonance of low order (see for 
example the resonance 3:1 (a=2.5 AU), Fig. 3) we recognize 
its chaotic border (separatrix) and the libration region. 
Moreover, inside mean motion resonances we have other 
small chaotic lines, whose size and location depend again on 
ω. These regions are due by the contribution to the disturbing 
functions of the possible resonant arguments. Due to 
degeneracy of the problem each resonance splits into a 
multiplet of resonances.  For example, the angles associated 
to the 3:1 resonance are ωλλϕ 231 −−= J , JJ ωωλλϕ −−−=32  
and JJ ωλλϕ 233 −−= . Since ω have a small but nonzero 
frequency, 1ϕ , 2ϕ  and 3ϕ  have zero derivatives at different 
locations. Therefore, the 3:1 mean motion resonance splits in 
a natural way into a threeplet of resonances. The exact 
location of each component is given by 0=kϕ& , k=1,2,3. The 
image of a given mean motion resonance varies from map to 
map since ω&  depends on ω via Lagrange’s equations. 

Finally, we note that the libration region around mean motion 
resonance decreases with the order q and increases with the 
eccentricity e. In other words the layer around a mean motion 
resonance has a ‘V’-shape and occupies smaller area once the 
order q increases. These results are in agreement with the 
analytical perturbation theory (Murray and Dermott, 1999), 
which guaranties higher terms in disturbing function once the 
order q is low and the eccentricity e is high. In fact, the 
coefficients of the resonant terms are proportional to qe . 

 

 

Fig. 2. Distribution of the main-belt and Trojans asteroids on 
the (a, e)-plane 



 
 

     

 

 

 

 

 

 

Fig. 3. Maps of the logarithm of the final value of FLI after 
700 periods of Jupiter. The test particles were placed on a 
regular 500x500 grid in (a, e) plane and the initial angles 
was: A) ω=0, M=0;  B) ω=90, M=0;  C) ω=180, M=0; D) 
ω=60, M=0; E) ω=-60, M=0; The values of lg(FLI) are color-
coded, according to the scale shown on the right 
(black=regular, white=chaotic) 

4. CONCLUSIONS 

The two body problem is highly degenerate. For this reason 
even small perturbations of the two-body problem, like the 
restricted three body problem, may exhibit very complicated 
dynamics. In this paper we considered the planar elliptic 
restricted three body problem (the Sun-Jupiter-Asteroid 
system) and by using the fast Lyapunov indicator we studied 
numerically the global topology of the phase space. On each 
dynamical map, regular regions, chaotic zones and ‘V’-
shaped layers around the mean motion resonances of low 
order, predicted by analytical theories (Murray and Dermott, 
1999; Tsiganis, 2008; Morbidelli, 2002; and references 
therein) are revealed by the FLI in a very short 
computationally time. The degeneracy of the problem, 
pointed out by the resonance splitting, is clearly illustrated in 
the Figs. 3. Secular and mean-motion resonances of low order 
are known to lead to fast chaotic transport of asteroid orbits 
on million year time-scales (Gladman et al., 1997; 
Morbidelli, 2002).  

On our dynamical maps, some thin layers associated with 
mean motion resonances of moderate order are displayed. 
These resonances together with the three-body mean motion 
resonances (asteroid-Jupiter-Saturn) (Nesvorný and 
Morbidelli, 1998) form a dense network of thin chaotic layers 
throughout the asteroid belt, where small-amplitude 
variations of proper elements of asteroids accumulate slowly 
over time. This effect is known as chaotic diffusion (Tsiganis, 
2008). The results obtained here for the PERTBP encourage 
the application of the FLI to study this fine chaotic structure 
of the asteroid belt. 
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