DFT STUDY OF NEUTRAL $B_{12}H_n$ (n≤12), $AlB_{12}H_n$ (n≤13) CLUSTERS AND CHARGED CLUSTERS OF $[B_{12}H_{12}]^q$, $[AlB_{12}H_{12}]^q$, $[AlB_{12}H_{13}]^q$ (q = ±1, ±2)

Mustafa Böyükata¹ and Ziya B. Güvenç²

¹Department of Physics, Bozok University, 66200 Yozgat, Turkey ²Department of Electronics and Communication Engineering., Çankaya University, 06530 Ankara, Turkey

Abstract: Density Functional Theory (DFT) with B3LYP / 6-311++g** level has been performed to investigate the electronic structures of cage $B_{12}H_n$ for up to $n{=}{\leq}12$ and $AlB_{12}H_n$ for up to $n{\leq}13$. Moreover, the computations has been extended to the charged clusters of $[B_{12}H_{12}]^q$, $[AlB_{12}H_{12}]^q$ and $[AlB_{12}H_{13}]^q$ ($q{=}\pm1$ and ±2). Their enegetics and structural analysis have been done. Cage form of B_{12} is stable against to hydrogen adsorptions.

Keywords: DFT, Boron, Hydrogen.