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Abstract: A class of nonlinear sequential fractional differential equations dependent on
the basic fractional operator involving a Hadamard derivative is studied for arbitrary real
noninteger order α ∈ R+. The existence and uniqueness of the solution is proved using the
contraction principle and a new, equivalent norm and metric, introduced in the paper. As an
example, a linear nonhomogeneous FDE is solved explicitly in arbitrary interval [a, b] and for
a nonhomogeneous term given as an arbitrary Fox function. The general solution consists of
the solution of a homogeneous counterpart equation and a particular solution corresponding to
the nonhomogeneous term and is given as a linear combination of the respective Fox functions
series.
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1. INTRODUCTION

During the last decades, fractional differential equations
(FDE) have become an important tool in the mathemati-
cal modelling of many systems and processes in mechanics,
physics, chemistry, economics, engineering and bioengi-
neering. The investigations concerning solving methods,
both analytical and numerical, the existence and unique-
ness of solutions, as well as studies of the properties
of solutions have yielded many important results and
made FDE theory an important part of applied and pure
mathematics (compare monographs and review papers
(1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11) and the references given
therein).

In the paper we study a class of nonlinear sequential
fractional differential equations (SFDE) dependent on

the basic
(
log t

a

)β Dαa+ - operator with the Hadamard
derivative of arbitrary real noninteger order α ∈ R+ and
real parameter β ∈ R. Let us note that the Cauchy
problem for FDE containing the Hadamard derivatives was
discussed in (4) in a non-sequential setting. On the other
hand, results on the existence and uniqueness of solutions
for SFDE with a basic Riemann-Liouville derivative can
be found in (4; 12; 13; 14).

To prove the existence and uniqueness of the solutions in
an arbitrary finite interval [a, b] we follow the fixed point
method and apply the Banach theorem. A crucial point in
the proof is the application of a newly-introduced class of
one-parameter equivalent norms (and respective metrics)
in the space of continuous weighted functions. In this space
the SFDE in the form of[((

log
t

a

)β
Dαa+

)m
− L

((
log

t

a

)β
Dαa+

)]
f(t) =

= Ψ(t, f(t)),

where Ψ ∈ C([a, b]× R) and

L(λ) :=

m−1∑
j=0

cjλ
j , (1)

is equivalent to the following fractional integral equation

f(t) = L̄

(
Iαa+

(
log

t

a

)−β)
f(t) +

+

(
Iαa+

(
log

t

a

)−β)m
Ψ(t, f(t)) + φ0(t),

provided f ∈ Cn−α,log[a, b] the function space described in
(5), constants a, b ∈ R+ arbitrary, function φ0 belongs to

the kernel of the
((

log t
a

)β Dαa+)m operator and

L̄(λ) :=

m−1∑
j=0

cjλ
m−j . (2)

We shall prove that the integral operator on the right-hand
side of the above equation yields a contractive mapping in
the space of continuous weighted functions Cn−α,log[a, b],
when it is endowed with a respective metric from the
introduced family of one-parameter metrics.

As an application, we shall study in detail a simple linear
nonhomoegeneous FDE in the case when the nonhomo-
geneous term is chosen from the family of Fox functions.
Using the integration properties of Fox functions we arrive
at an explicit form of the general solution given as a Fox
functions series. The convergence of the respective series
results from the main theorem.



The paper is organized as follows. In the next section
we recall all the necessary definitions and properties of
fractional operators and Fox functions. We also construct
a one-parameter class of equivalent norms and respective
metrics in the space of continuous weighted functions
Cn−α,log[a, b]. Then we prove that certain fractional in-
tegral operators are bounded in this space endowed with
an arbitrary norm from the proposed class. We generalize
the basic integral operator to a mapping, which appears
to be a contraction under the respective assumptions on
a parameter determining the norm and metric on the
function space. Section 3 contains the main result - a
theorem on the existence and uniqueness of the solution
to a certain nonlinear sequential FDE with the Hadamard
derivative. In section 4, applications to the linear and
nonhomogeneous FDE are given. For the arbitrary order
of a fractional derivative, we derive an explicit general
solution in the form of a Fox function series.

2. PRELIMINARIES

In the paper we shall study the existence and explicit form
of solutions of a certain fractional differential equation in
the Cγ,log[a, b] space when γ = n−α. Let us recall the norm
|| · ||γ,log and the generated metric active in this space of
weighted continuous functions, when Re(γ) ∈ (0, 1):

|| f ||γ,log:= sup
t∈[a,b]

|
(

log
t

a

)γ
f(t) | (3)

d(f, g) :=|| f − g ||γ,log . (4)

The Cγ [a, b] space is then given as

Cγ,log[a, b] := {f ∈ C(a, b]; || f ||γ,log<∞}. (5)

Now, we recall the definitions of left-sided fractional oper-
ators. In our paper we shall consider fractional differential
equations containing Hadamard derivatives. Both the in-
tegral and derivative are defined as follows (4).
Definition 2.1 Let Re(α) > 0. Then the left-sided
Hadamard integral of order α is given by the formula

(Iαa+f)(t) =
1

Γ(α)

t∫
a

(
log

t

s

)α−1
f(s)

s
ds t > a > 0, (6)

where Γ(α) denotes the Euler gamma function.
Let Re(α) ∈ (n − 1, n). Then the left-sided Hadamard
derivative is defined as

(Dαa+f)(t) =

(
t
d

dt

)n
(In−αa+ f)(t) t > a > 0. (7)

An important and characteristic feature of the above frac-
tional operators is their composition rule which we quote
in property below after the monograph by Kilbas et al (4).
It will be applied in the transformation of the investigated
FDE into its equivalent integral form as well as in the
derivation of the corresponding initial conditions.

Property 2.2 Let Re(β) ≥ Re(α) > 0. Then the
following formula

Dαa+I
β
a+f(t) = Iβ−αa+ f(t) (8)

holds at any point t ∈ [a, b] when f ∈ C[a, b]. If f ∈
Cγ,log[a, b], then the above composition rule holds at any
point t ∈ (a, b].
Let us also recall some results on Hadamard integration
and differentiation which are useful in the derivation of
stationary functions and in the construction of solutions
to the discussed equations.

Property 2.3 Let Re(β) > 0 and Re(α) > 0. Then the
following formulas hold:

Iαa+
(

log
t

a

)β−1
=

Γ(β)

Γ(β + α)

(
log

t

a

)β+α−1
(9)

Dαa+
(

log
t

a

)β−1
=

Γ(β)

Γ(β − α)

(
log

t

a

)β−α−1
. (10)

In further considerations we also apply Fox functions.
Such functions are defined via a Mellin-Barnes integral
and look as follows for integer numbers m,n, p, q fulfilling
0 ≤ m ≤ q, 0 ≤ n ≤ p, for complex numbers ai, bj ∈ C and
for real parameters αi, βj ∈ R (4; 16):

Hm,n
p,q

[
z

(ai)1,p; (αi)1,p
(bj)1,q; (βj)1,q

]
= (11)

1

2πi

∫
L

m∏
j=1

Γ(bj + βjs)
n∏
i=1

Γ(1− ai − αis)

p∏
i=n+1

Γ(ai + αis)
q∏

j=m+1

Γ(1− bj − βjs)
z−sds,

where i = 1, 2, . . . , p; j = 1, 2, . . . , q and contour L sepa-
rates the poles of the gamma functions in the numerator
of the complex kernel (4; 16).
When αi = 1, βj = 1 for any i = 1, . . . , p j = 1, . . . , q,
the above Fox function belongs to the subclass of Meijer
G-functions:

Hm,n
p,q

[
z

(ai)1,p; (1)1,p
(bj)1.q; (1)1,q

]
= Gm,np,q

[
z

(ai)1,p
(bj)1,q

]
. (12)

The following parameters determine the integration prop-
erties of Fox and Meijer functions:

a∗ :=

n∑
i=1

αi −
p∑

i=n+1

αi +

m∑
j=1

βj −
q∑

j=m+1

βj (13)

µ :=

q∑
j=1

bj −
p∑
i=1

ai +
p− q

2
(14)

In what follows, we shall study a class of equations con-
taining the fractional differential operators of a real order.
Thus, we assume order α ∈ R+ as well as parameter β ∈ R
throughout the paper. In the property below, we rewrite
the general theorem on the Riemann-Liouville integration
of Fox functions to the case of real α and β (compare
the definition of the Iα0+ integral and Theorem 2.7 from
monograph (16)).

Property 2.4 Let us assume Hm,n
p,q ∈ Cn−α[0, b] and

a∗ > 0 or a∗ = 0, Re(µ) < −1. If α ∈ R+, β ∈ R and
{α}− β > 0, then the following integration formula holds:

Iα0+t
−βHm,n

p,q

[
tσ

(ai)1,p; (αi)1,p
(bj)1,q; (βj)1,q

]
= (15)



= tα−βHm,n+1
p+1,q+1

[
tσ

(β, (ai)1,p); (σ, (αi)1,p)
((bj)1,q, β − α); ((βj)1,q, σ)

]
.

In the above property the results are given for the
Riemann-Liouville fractional integral. This formula can be
translated for the Hadamard integral when we apply the
following relation between both integrals:

Nlogf(t) := f(log
t

a
) (16)

NlogI
α
0+N

−1
log = Iαa+. (17)

Using the introduced relation we arrive at an analogous
integration formula which describes the Hadamard integral
for the respective Fox function.

Property 2.5 Let us assume Hm,n
p,q ∈ Cn−α[0, b] and

a∗ > 0 or a∗ = 0, Re(µ) < −1. If α ∈ R+, β ∈ R and
{α}− β > 0, then the following integration formula holds:

Iαa+Nlogt−βHm,n
p,q

[
tσ

(ai)1,p; (αi)1,p
(bj)1,q; (βj)1,q

]
= (18)

= Nlogt
α−βHm,n+1

p+1,q+1

[
tσ

(β, (ai)1,p); (σ, (αi)1,p)
((bj)1,q, β − α); ((βj)1,q, σ)

]
.

To solve the discussed equation in the space of contin-
uous weighted functions, we shall extend the standard
norm and metric (3,4). To this aim, we propose to apply
a two-parameter composed Mittag-Leffler function (com-
pare monograph (4)). Let us define a three-parameter
family of functions using such a Mittag-Leffler function.
For real numbers α, β, κ ∈ R we define function eα,β,κ as
follows:

eα,β,κ(t) := Γ({α} − β)Eα,{α}−β

(
κ

(
log

t

a

)α)
, (19)

where E denotes the two-parameter Mittag-Leffler func-
tion given in our construction as series

Eα,{α}−β(z) :=

∞∑
k=0

zk

Γ(αk + {α} − β)
, (20)

where the z ∈ C arbitrary and {α} denotes the fractional
part of real number α. It is easy to check that functions
eα,β,κ obey the following fractional integration formula:

Iαa+
(

log
t

a

){α}−β−1
eα,β,κ(t) = (21)

=

(
log t

a

){α}−β−1
κ

[
eα,β,κ(t)− 1

]
,

provided {α} − β > 0.
Let us observe that we can apply the functions defined
in (19) to modify norm (3) and the respective metric in
the sense of Bielecki (17). He used exponential functions to
introduce an equivalent metric and to show the existence of
global solutions of certain ordinary and partial differential
equations in respective function spaces. A similar tech-
nique was proposed in (18; 19) for some simple nonlinear
fractional differential equations. Then Lakshmikantham et
al (1; 20) developed a modification of the metric in the
C[0, b] space by means of a one-parameter Mittag-Leffler

function and applied it in the solution of the nonlinear
fractional differential equation of order α ∈ (0, 1). Here, we
shall construct a class of metrics in the Cn−α,log[a, b] space
which are equivalent to standard metric (4) generated by
norm (3). These metrics will be applied in the proof of
the existence and uniqueness of solutions for a class of
fractional differential equations in the Cn−α,log[a, b] space.
Definition 2.6 The following formulas define a norm and
a respective metric in the Cn−α,log[a, b] space, provided
κ ∈ R+ and {α} − β > 0

|| f ||n−α,log,κ:= sup
t∈[a,b]

|
(
log t

a

)n−α
f(t) |

eα,β,κ(t)
(22)

dκ(f, g) :=|| f − g ||n−α,log,κ . (23)

Property 2.7 Metric dκ is equivalent to standard metric
(4) generated by norm (3).
Proof : The equivalence of the metrics results from the
following inequalities fulfilled by norms (3) and (22):

|| f ||n−α,log
eα,β,κ(b)

≤|| f ||n−α,log,κ≤|| f ||n−α,log (24)

for arbitrary function f ∈ Cn−α,log[a, b].

Let us note that fractional integral operator Iαa+
(
log t

a

)−β
is bounded in the (Cn−α,log[a, b]; || · ||n−α,log,κ) spaces
when β ≤ 0 and a, b ∈ R+ arbitrary. This property follows
from formula (21) and from the fact that series eα,β,κ is
absolutely and uniformly convergent in any interval [a, b]
when a > 0 and assumptions from Definition 2.6 are
fulfilled.

Property 2.8 If κ ∈ R+ and β ≤ 0, then the following
inequalities are valid for all functions f ∈ Cn−α,log[a, b],
a > 0:

|| Iαa+
(

log
t

a

)−β
f ||n−α,log,κ≤ (25)

≤
(
log b

a

)−β
κ

|| f ||n−α,log,κ

||

(
Iα0+

(
log

t

a

)−β)j
f ||n−α,log,κ≤ (26)

≤

((
log b

a

)−β
κ

)j
|| f ||n−α,log,κ .

Now we construct a mapping on the space of weighted
continuous functions Cn−α,log[a, b] and test its properties.
Definition 2.9 We define mapping Tm as follows

Tmf(t) := L̄

(
Iαa+

(
log

t

a

)−β)
f(t) (27)

for any function f ∈ Cn−α,log[a, b], {α} − β ≥ 0 and
polynomial L̄ defined in formula (2).
The defined mapping is a contraction in the
(Cn−α,log[a, b]; dκ) space of functions when the metric is
given by formula (23) and parameter κ is large enough.
This property is formulated and proved in the following
lemma.



Lemma 2.10 If κ > (1 +
∑m−1
j=0 | cj |)

(
log b

a

)−β
and

β ≤ 0, then mapping Tm given in Definition 2.9 is a
contraction in the Cn−α,log[a, b] space endowed with the
dκ metric.
Proof : Let f, g be a pair of arbitrary functions from the
Cn−α,log[a, b] space. We apply Property 2.8 to estimate the
dκ distance of their images Tmf and Tmg:

dκ(Tmf, Tmg) =|| Tmf − Tmg ||n−α,log,κ≤

≤
m−1∑
j=0

| cj | ×

× ||

(
Iα0+

(
log

t

a

)−β)m−j
(f(t)− g(t)) ||n−α,log,κ≤

≤

m−1∑
j=0

| cj |
(
log b

a

)−β(m−j)
κm−j

 · || f − g ||n−α,log,κ≤
≤
∑m−1
j=0 | cj |(
log b

a

)β
κ
· || f − g ||n−α,log,κ=

=

∑m−1
j=0 | cj |(
log b

a

)β
κ
dκ(f, g).

Thus, we obtained inequality

dκ(Tmf, Tmg) ≤
∑m−1
j=0 | cj |(
log b

a

)β
κ
dκ(f, g), (28)

which means Tm is a contractive mapping with respect to

the dκ metric as fraction (
∑m−1
j=0 | cj |)/

(
log b

a

)β
κ ∈ (0, 1)

by assumption. This ends the proof.
Remark: Let us note that the proved result does not
predict what happens when {α} − β > 0 and β > 0.
In this case norm (3) must be modified using another
type of function. Detailed calculations will be given in
a subsequent paper.

3. MAIN RESULTS

We shall study the existence and uniqueness of solutions
for a sequential fractional differential equation with the
Hadamard derivative:[((

log
t

a

)β
Dαa+

)m
− L

((
log

t

a

)β
Dαa+

)]
f(t) = (29)

= Ψ(t, f(t)),

when {α} − β > 0, L is polynomial given in (1), Ψ ∈
C([a, b]× R) and t ∈ [a, b].
From the composition rules given in Property 2.2, it follows
that the above equation is equivalent in the Cn−α,log[a, b]
space to the fractional integral equation written using
defined mapping Tm (Definition 2.9):

f(t) = (30)

= Tmf(t) +

(
Iαa+

(
log

t

a

)−β)m
Ψ(t, f(t)) + φ0(t).

Let us denote the mapping on the right-hand side of the
above equation as follows:

Tf(t) := (31)

= Tmf(t) +

(
Iαa+

(
log

t

a

)−β)m
Ψ(t, f(t)) + φ0(t).

Function φ0 in definition (31) is an arbitrary stationary
function of operator ((log t

a )βDαa+)m, which means it ful-
fills the equation

((log
t

a
)βDαa+)mφ0(t) = 0. (32)

Such an equation is easy to solve and the solution is
a linear combination of the power functions

φ0(t) =

m−1∑
j=0

n∑
l=1

dj,l

(
log

t

a

)(α−β)j+α−l

, (33)

where coefficients dj,l are arbitrary real numbers. It can
also be expressed as a combination of composed Meijer
G-functions:

φ0(t) = (34)

=

m−1∑
j=0

n∑
l=1

d′j,lNlogG
1,0
1,1

[
t

(α− β)j + α− l + 1
(α− β)j + α− l

]
.

Let us observe that due to assumption {α} − β > 0, all
the stationary functions given by (33,34) belong to the
Cn−α,log[a, b] space. Thus, mapping T given in (31), maps
the weighted continuous functions into functions from the
same space for arbitrary function φ0.

Proposition 3.1 Let α ∈ (n − 1, n), β ≤ 0 and function
Ψ ∈ C([a, b]× R) fulfill the following Lipschitz condition

| Ψ(t, x)−Ψ(t, y) |< M | x− y | (35)

for t ∈ [a, b] and x, y ∈ R.
Each stationary function φ0 given by (33,34) generates
unique solution f ∈ Cn−α,log[a, b] of fractional differential
equation (29).
The solution is given as a limit of iterations of mapping T
(31):

f(t) = lim
k−→∞

T kψ(t), (36)

where function ψ ∈ Cn−α,log[a, b] is arbitrary.
Proof : We start by observing that Lipschitz condition
(35) yields the following inequality for each κ ∈ R+:

|| Ψ(t, f(t))−Ψ(t, g(t)) ||n−α,log,κ=

= sup
t∈[a,b]

(log t
a )n−α | Ψ(t, f(t))−Ψ(t, g(t)) |

eα,β,κ(t)
≤

≤M sup
t∈[a,b]

(log t
a )n−α | f(t)− g(t) |

eα,β,κ(t)
=

= M · || f − g ||n−α,log,κ .

Condition β ≤ 0 implies {α}−β > 0. Due to this fact and
to the above calculations, mapping T defined in (31) is



bounded for any stationary function φ0 and in each space
(Cn−α,log[a, b]; || · ||n−α,log,κ) according to Property 2.8.
Now we assume:

κ > (1 +M +

m−1∑
j=0

| cj |)(log
b

a
)−β (37)

and write equation (29) as an equivalent fixed point
condition

f(t) = Tf(t) (38)

in space (Cn−α,log[a, b]; || · ||n−α,log,κ). We check that T
is a contraction by a straightforward calculation:

dκ(Tf, Tg) =|| Tf − Tg ||n−α,log,κ≤
≤|| Tmf − Tmg ||n−α,log,κ +

+ || (Iαa+(log
t

a
)−β)m[Ψ(t, f(t))−Ψ(t, g(t))] ||n−α,log,κ≤

≤
∑m−1
j=0 | cj |

(log b
a )βκ

|| f − g ||n−α,log,κ +

+
M

((log b
a )βκ)m

|| f − g ||n−α,log,κ≤

≤
M +

∑m−1
j=0 | cj |

(log b
a )βκ

|| f − g ||n−α,log,κ=

=
M +

∑m−1
j=0 | cj |

(log b
a )βκ

dκ(f, g).

We conclude that mapping T obeys for any pair of func-
tions f, g ∈ Cn−α,log[a, b] the following condition:

dκ(Tf, Tg) <
M +

∑m−1
j=0 | cj |

(log b
a )βκ

dκ(f, g) (39)

which means it is a contraction as fraction
M+
∑m−1

j=0
|cj |

(log b
a )
βκ

∈ (0, 1) by assumption (37).

Hence, a unique fixed point in space Cn−α,log[a, b] exists
by the Banach theorem and is explicitly given as a limit
of iterations of mapping T :

f(t) = lim
k−→∞

T kψ(t), (40)

where ψ ∈ Cn−α,log[a, b] is an arbitrary starting function
and the convergence with respect to the dκ metric is
equivalent to the convergence with respect to standard d
metric (4). This ends the proof.
By carefully analysing the above proposition, we notice
a one to one correspondence between the choice of the
generating stationary function and the unique solution of
problem (29). Thus, the initial conditions at t = a are
also determined by function φ0. This relation leads to
the following formulation and solution of the respective
Cauchy problem in the Cn−α,log[a, b] space.

Theorem 3.2 Let α ∈ (n−1, n), β ≤ 0 and let function Ψ
obey the assumptions of Proposition 3.1. Then fractional
differential equation (29) has a unique solution f in the
Cn−α,log[a, b] space fulfilling the set of initial conditions:

Dα−la+ ((log
t

a
)βDαa+)jf(t) |t=a= d̄j,l, (41)

where l = 1, . . . , n and j = 0, . . . ,m− 1.
This solution is a limit of the iterations of mapping T (31)
generated by a stationary function in the form of

φ0(t) = (42)

=

m−1∑
j=0

n∑
l=1

d̄j,l
Γ((α− β)j + α− l + 1)

(log
t

a
)(α−β)j+α−l.

4. APPLICATIONS - EXAMPLE

We shall now discuss the application of the above results
to a nonhomogeneous linear fractional differental equation
with the Hadamard derivative:[

(log
t

a
)βDαa+ − λ

]
f(t) = NlogH

m,n
p,q (tσ), (43)

where t ∈ [a, b], function H is an arbitrary Fox function
from the Cn−α[0, b] class, fulfilling the assumptions of
Property 2.5 and σ > 0 (compare formula (11)):

Hm,n
p,q (tσ) = Hm,n

p,q

[
tσ

(ai)1,p; (αi)1,p
(bj)1,q; (βj)1,q

]
. (44)

Let us denote the vectors defining the above Fox function
as follows:

a = (ai)1,p α = (αi)1,p (45)

b = (bj)1,q β = (βj)1,q. (46)

The solution of equation (43) is constructed using the
integration formula from Property 2.5. The convergence
of the respective series is implied and ensured by Propo-
sition 3.1. In this paper we shall restrict the example to
a general solution to problem (43), dependent on n con-
stant coefficients.

As we are discussing a linear equation, we know that using
the iterations of mappings T , generated by the correspond-
ing stationary functions, we can split the solution into f0,
which solves the homogenous counterpart of equation (43):[

(log
t

a
)βDαa+ − λ

]
f0(t) = 0 (47)

and fs which is generated by stationary function φ0 = 0.
The full solution of equation (43) is then the following
sum:

f(t) = f0(t) + fs(t). (48)

Part fs of the full solution is generated by the
φ0 = 0 stationary function when we also take ψ = 0 in
(31,40). In this case, mapping T is given for any function
g ∈ Cn−α,log[a, b] by the formula:

Tg := λIαa+(log
t

a
)−βg + Iαa+(log

t

a
)−βNlogH

m,n
p,q (tσ). (49)

This implies that fs is given as a series:

fs(t) =

∞∑
k=0

λk(Iαa+(log
t

a
)−β)k+1NlogH

m,n
p,q (tσ) (50)

which is absolutely convergent with respect to the
|| · ||n−α,log norm. Function fs can be explicitly calculated



using integration formula (18) and it is the following series
of Fox functions:

fs(t) =

∞∑
k=0

λk(log
t

a
)(k+1)(α−β)× (51)

×NlogH
m,n+k+1
p+k+1,q+k+1Nlog

[
tσ

Ek+1; Ek+1

Fk+1;Fk+1

]
,

where the component vectors look as follows for k′ ≥ 1:

Ek′ = [βek′ + (β − α)jk′ ; a] ∈ Rk
′+p (52)

Fk′ = [b; (β − α)(ek′ + jk′)] ∈ Rk
′+q (53)

Ek′ = [σek′ ;α] ∈ Rk
′+p (54)

Fk′ = [β;σek′ ] ∈ Rk
′+q. (55)

Vectors a,α, b,β are given in (45,46) and we have denoted:

ek′ = [1, . . . , 1] ∈ Rk
′

(56)

jk′ = [0, 1, . . . , k′ − 1] ∈ Rk
′
. (57)

The f0 part of the solution is a linear combination of basic
solutions:

f0(t) =

n∑
l=1

alf
l(t). (58)

Each of the f l basic components of the solution is gen-
erated by the (log t

a )α−l component of the stationary
function and is given as the following series of Meijer G-
functions:

f l(t) =

∞∑
k=0

λk(log
t

a
)(α−β)kNlogG

1,k
k+1,k+1

[
t

Ak,l

Bk,l

]
(59)

with defining vectors Ak,l,Bk,l

Ak,l = [βek + (β − α)jk;α− l + 1] ∈ Rk+1 (60)

Bk,l = [α− l; (β − α)(ek + jk)] ∈ Rk+1. (61)

In the above formulas ek, jk are given in (56,57).

5. FINAL REMARKS

In the paper we derived an explicit solution for a class of
SFDE with the Hadamard derivative. It is given as a limit
of contractions in the space of continuous weighted func-
tions with a respective metric. As all the newly constructed
metrics are equivalent to the standard metric, we observe
that the proved convergence also provides the convergence
with respect to the initial metric.
The case of a simple linear nonhomogeneous fractional
equation is discussed in detail and the solutions are Fox
functions series. This form of the solution appears to be
similar to that obtained earlier for FDE (11).
Let us note that the proposed method of proving the
existence and uniqueness of a solution to a SFDE can
be easily extended to the case when a fractional oper-
ator of another type is involved. Our result, valid in
the space of continuous weighted functions, and that ob-
tained in (1; 18; 19; 20) for continuous functions, im-
ply that the extension of the Bielecki method (17) to
FDE theory requires careful construction of the equivalent

norms. The respective function space, the form of the
basic fractional operator and the properties of Mittag
-Leffler functions determine new norms which allow us to
prove the global existence of a solution in an arbitrary
finite interval.
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