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Abstract: In this paper, we present an initial value problem for a space-time fractional
anomalous diffusion process in two dimensional space. From the mathematical and physical
point of views, anomalous diffusion may be based on generalized diffusion equations which are
defined in terms of fractional order derivatives in space and/or time. Space derivatives with
respect to x and y variables are defined in terms of Riesz-Feller derivative of order 0 < α < 1
and 1 < µ ≤ 2, respectively; θ1 (θ1 ≤ min {α, 1− α}) and θ2 (θ2 ≤ min {µ, 2− µ}) are skewness
parameters; and the time derivative is defined in sense of Caputo of order β (0 < β ≤ 1). It is
assumed that the solution and the initial condition functions can be expanded in a complex
Fourier series. Under this assumption and by applying Fourier-Laplace transforms, analytical
solution is obtained. Note that, the expansion of the solution in a series makes it possible
to reduce the main space-time fractional differential equation with three fractional derivative
terms to a time fractional differential equation. It gives simplifying to calculation of numerical
solutions. Grünwald-Letnikov approximation of Caputo derivative is used to take numerical
solutions. After that, the comparison of analytical and numerical solutions is proposed by a
numerical example and variations of problem parameters are analyzed by figures. Finally, the
convergence of analytical and numerical solutions to each other shows the effectiveness of the
numerical methods to the present work.
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1. INTRODUCTION

In the last decade, there has been a considerable interest
to the applications of fractional calculus such that many
processes in the nature have been successfully modelled
by a set of axioms, definitions and methods of fractional
calculus (see Kilbas et al. (2006), Miller and Ross (1993),
Samko and Kilbas (1993), Podlubny (1999) ). One of these
processes is anomalous diffusion which is a phenomenon
occurs in complex and non-homogeneous mediums. The
phenomenon of anomalous diffusion may be based on
generalized diffusion equation which contains fractional
order space and/or time derivatives Metzler and Klafter
(2000). Turski et al. (2007) presented the occurrence of
the anomalous diffusion from the physical point of view
and also explained the effects of fractional derivatives
in space and/or time to diffusion propagation. Agrawal
(2001) represented an analytical technique by using eigen-
functions for a fractional diffusion-wave system and there-
fore, provided that this formulation could be applied to
all those systems for which the existence of eigenmodes
is guaranteed. Agrawal (2002) also formulated a general
solution by using finite sine transform technique for a
fractional diffusion-wave equation in a bounded domain
whose fractional term was described in sense of Caputo.
Herzallah et al. (2010) researched the solution of a frac-
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tional diffusion wave model which is more accurate and
provides the existence, uniqueness and continuation of
the solution. Huang and Liu (2005a) considered a sort
of generalized diffusion equation which is defined as a
space-time fractional diffusion equation in sense of Caputo
and Riemann-Liouville operators. In addition, Huang and
Liu (2005b) found the fundamental solution of the space-
time fractional advection-dispersion equation with Riesz-
Feller derivative. Langlands (2006) proposed a modified
fractional diffusion equation on an infinite domain and
therefore found the solution as an infinite series of Fox
functions. Sokolov et al. (2004) analyzed different types of
distributed-order fractional diffusion equations and inves-
tigated the effects of different classes of such equations.
Saichev and Zaslavsky (1997) presented the solutions of
a symmetrized fractional diffusion equation with a source
term applying a method similar to separation of variables.
Mainardi et al. (2001) researched the fundamental solution
of a Cauchy problem for the space-time fractional diffusion
equation obtained from the standard diffusion equation by
replacing the second order space derivative by a fractional
Riesz or Riesz-Feller derivative, and the first order time-
derivative by a fractional Caputo derivative. Gorenflo and
Mainardi (1998), Gorenflo and Mainardi (1999), analyzed
a space-fractional (or Levy-Feller) diffusion process gov-
erned by a generalized diffusion equation which generates
all Levy stable probability distributions and also approx-



imated these processes by random walk models, discreted
space and time based on Grünwald-Letnikov (GL) approx-

imation. Özdemir et al. (2009) presented the numerical so-
lution of a diffusion-wave problem in polar coordinates by
using GL approximation. Özdemir and Karadeniz (2008)
also applied GL formula to find the numerical results for
a diffusion problem in cylindrical coordinates.

In addition, numerical schemes are very popular research
topics in fractional calculus. Because, the analytical so-
lutions of the fractional differential equations are usually
obtained in terms of Green and Fox functions and difficult
to calculate explicitly. For this reason, there are many
research related with numerical approximation of space
or space-time fractional diffusion equations. Shen and Liu
(2005) investigated the error analysis of the numerical so-
lution of a space fractional diffusion equation obtained by
using an explicit finite difference method. Liu et al. (2007)
formulated the numerical solution of a space-time frac-
tional advection-dispersion equation in terms of Caputo
and RL derivatives by using an implicit and an explicit
difference methods. Lin et al. (2009) considered a nonlin-
ear fractional diffusion equation in terms of generalized
Riesz fractional derivative and applied an explicit finite-
difference method to find numerical solutions. Ciesielski
and Leszczynski (2006) proposed a new numerical method
for the spatial derivative called Riesz-Feller operator, and
so found the numerical solutions to a fractional partial
differential equation which describe an initial-boundary
value problem in one-dimensional space. Ciesielski and
Leszczynski (2006) also presented the numerical solu-
tions of a boundary value problem for an equation with
the Riesz-Feller derivative. Liu et al. (2007) presented
a random walk model for approximating a Levy-Feller
advection-dispersion process and proposed an explicit fi-
nite difference approximation for Levy-Feller advection-
dispersion process, resulting from the GL discretization
of fractional derivatives. Zhang et al. (2007) considered
the Levy-Feller diffusion equation and investigated their
probabilistic interpretation and numerical analysis in a
bounded spatial domain. Moreover, Machado (2003) pre-
sented a probabilistic interpretation to the fractional-order
derivatives.

The plan of this work as follows. In this work, we consider
a two dimensional anomalous diffusion problem in terms of
Caputo and Riesz-Feller derivatives. For this purpose, we
give some basic definitions necessary for our formulations
in Section 2. In section 3, we formulate our considerations
and find the analytical solution of the problem. We apply
GL definition to find the numerical solution in Section 4.
In Section 5, we choose an example and therefore show
the effectiveness of the numerical approximation for our
problem. Finally, we conclude our work in Section 6.

2. MATHEMATICAL BACKGROUND

In this work, we consider an anomalous diffusion equation
in two-dimensional space. We define our problem in terms
of Caputo time and Riesz-Feller fractional derivatives.
Therefore, let we remind the well known definitions and
origins of these operators.

Originally, Riesz introduced the pseudo-differential op-
erator xI

α
0 whose symbol is |κ|

−α
, well defined for any

positive α with the exclusion of odd integer numbers, then
was called Riesz Potential. The Riesz fractional derivative

xD
α
0 = − xI

α
0 defined by analytical continuation can be

represented as follows

xD
α
0 = − |κ|

α
(1)

= −
(

κ2
)

α
2

= −

(

−
d2

dx2

)
α
2

.

In addition, Feller (1952) generalized the Riesz fractional
derivative to include the skewness parameter θ of the
strictly stable densities. Feller showed that the pseudo-
differential operator Dα

θ is as the inverse to the Feller
potential, which is a linear combination of two Riemann-
Liouville (or Weyl) integrals:

xI
α
+f (x) =

1

Γ (α)

x
∫

−∞

(x− ξ)
α−1

f (ξ) dξ, (2)

xI
α
−f (x) =

1

Γ (α)

+∞
∫

x

(ξ − x)
α−1

f (ξ) dξ (3)

where α > 0. By these definitions the Feller potential can
be defined as

xI
α
θ f (x) = c+ (α, θ)x I

α
+f (x) + c− (α, θ)x I

α
−f (x) (4)

where the real parameters α and θ are always restricted
as follows

0 < α ≤ 2, α 6= 1,

|θ| ≤ min {α, 2− α} ,

and also the coefficients

c+ (α, θ) =
sin

(

(α−θ)π
2

)

sin (απ)
, (5)

c− (α, θ) =
sin

(

(α+θ)π
2

)

sin (απ)
.

Using the Feller potential, Gorenflo and Mainardi (1998)
defined the Riesz-Feller derivative
∂αf (x)

∂ |x|
α
θ

= −xI
−α
θ f (x)

= −
[

c+ (α, θ)x D
α
+f (x) + c− (α, θ)x D

α
−f (x)

]

where xD
α
±f (x) are Weyl fractional derivatives defined as

xD
α
±f (x) =











±
d

dx

[

xI
1−α
± f (x)

]

, 0 < α < 1,

d2

dx2

[

xI
2−α
± f (x)

]

, 1 < α ≤ 2.
(6)

The Caputo fractional derivative is defined as

∂βu(t)

∂tβ
=

1

Γ (n− β)

t
∫

0

(t− τ)
n−β−1

(

d

dτ

)n

u (τ) dτ, (7)

where 0 < β ≤ n, n ∈ Z. Now, we can formulate our
problem after these preliminaries.

3. FORMULATION OF THE MAIN PROBLEM

Let we consider the following space-time fractional anoma-
lous diffusion problem:

∂βu(x, y, t)

∂tβ
=

∂αu(x, y, t)

∂ |x|
α
θ1

+
∂µu(x, y, t)

∂ |y|
µ
θ2

, (8)



u(x, y, 0) = u0 (x, y) , (9)

lim
x,y→±∞

u(x, y, t) = 0, (10)

where x, y ∈ R; β, α, µ are real parameters restricted as
0 < β ≤ 1, 0 < α < 1, 1 < µ ≤ 2; the skewness parameters
θ1 (θ1 ≤ min {α, 1− α}) and θ2 (θ2 ≤ min {µ, 2− µ}) are
measures of the asymmetry of the probability distribution
of a real-valued random variable among the x and y co-
ordinate axes. Note that, many simplistic mathematical
models are defined under the Gaussian (normal) distri-
bution; i.e., the skewness parameter is zero. However in
reality, random variables may not distribute symmetri-
cally. Therefore, the behaviour of such anomalous diffusion
problem differs with the changing of θ1 and θ2 parameters.
We first assume that the solution and the initial condi-
tion functions can be expanded in the following complex
Fourier series expansions respectively,

u(x, y, t) =

∞
∑

n=1

∞
∑

m=1

unm (t) einxeimy, (11)

u0 (x, y) =

∞
∑

n=1

∞
∑

m=1

u0nmeinxeimy, (12)

where i2 = −1. Under these assumptions, we calculate the
fractional derivative terms in the right hand side of Eq.(8),
respectively, as follows: We start with the calculation of
∂αu(x,y,t)

∂|x|αθ1
term which dependent on x variable and 0 <

α < 1. Let us remind the definition:
∂αu(x, y, t)

∂ |x|
α
θ1

= −
[

c+ (α, θ1)−∞ Dα
xu(x, y, t)

+c− (α, θ1)x D
α
+∞u(x, y, t)

]

(13)

where

−∞Dα
xu(x, y, t) =

∂

∂x





1

Γ (1− α)

x
∫

−∞

u(ξ, y, t)

(x− ξ)
α dξ



 (14)

and

xD
α
+∞u(x, y, t) = −

∂

∂x





1

Γ (1− α)

∞
∫

x

u (ξ, y, t)

(ξ − x)
α dξ



 (15)

are left and right side Weyl fractional derivatives. Now,
substituting Eq.(11) into Eq.(14) we have

−∞Dα
xu(x, y, t) =

=
∂

∂x





1

Γ (1− α)

∞
∑

n=1

∞
∑

m=1

unm (t) eimy

x
∫

−∞

einξ

(x− ξ)
α dξ





=
1

Γ (1− α)

∞
∑

n=1

∞
∑

m=1

unm (t) eimy d

dx



einx
∞
∫

0

e−inr

rα
dr





=
1

Γ (1− α)

∞
∑

n=1

∞
∑

m=1

unm (t) eimy d

dx

(

einx (in)
α−1

Γ (1− α)
)

=
∞
∑

n=1

∞
∑

m=1

(in)
α
unm (t) eimyeinx (16)

and with the similar manipulations,

xD
α
+∞u(x, y, t) =

∞
∑

n=1

∞
∑

m=1

(−in)
α
unm (t) eimyeinx.

Hence, for 0 < α < 1,

∂αu(x, y, t)

∂ |x|
α
θ1

= −
∞
∑

n=1

∞
∑

m=1

nα {c+ (α, θ1) (i)
α

+c− (α, θ1) (−i)
α
}unm (t) eimyeinx.(17)

Now, we obtain a similar computation of ∂µu(x,y,t)
∂|y|µ

θ2

for the

case of 1 < µ ≤ 2. Therefore, we get

−∞Dµ
yu(x, y, t) =

∂2

∂y2





1

Γ (2− µ)

y
∫

−∞

u(x, η, t)

(x− η)
µ−1 dη





=
∂2

∂y2





1

Γ (2− µ)

∞
∑

n=1

∞
∑

m=1

unm (t) einx
y
∫

−∞

eimη

(x− η)
µ−1 dη





=
1

Γ (2− µ)

∞
∑

n=1

∞
∑

m=1

unm (t) einx
d2

dy2



eimy

∞
∫

0

e−imk

kµ−1
dk





=
1

Γ (2− µ)

∞
∑

n=1

∞
∑

m=1

unm (t) einx
d2

dy2

(

eimy (im)
µ−2

Γ (2− µ)
)

= −

∞
∑

n=1

∞
∑

m=1

mµ (i)
µ−2

unm (t) einxeimy (18)

and

yD
µ
+∞u(x, y, t) = −

∞
∑

n=1

∞
∑

m=1

mµ (−i)
µ−2

unm (t) einxeimy.

Hence, we obtain

∂µu(x, y, t)

∂ |y|
µ
θ2

=
∞
∑

n=1

∞
∑

m=1

mµ
{

c+ (µ, θ2) (i)
µ−2

+c− (µ, θ2) (−i)
µ−2

}

unm (t) eimyeinx(19)

Consequently, substituting Eqs.(17) and (19) into Eq.(8)
we take the following time fractional differential equation

∂βunm (t)

∂tβ
= {−nα [c+ (α, θ1) (i)

α
+ c− (α, θ1) (−i)

α
]

+mµ
[

c+ (µ, θ2) (i)
µ−2

+ c− (µ, θ2) (−i)
µ−2

]}

unm (t) .

(20)
Therefore, we reduce the Eq.(8) to a fractional differential
equation with one fractional term. To find the unm (t), we
apply Laplace transform to Eq.(20) and obtain

sβunm (s)− sβ−1unm (0) +Aunm (s) = 0 (21)

where

A = {nα [c+ (α, θ1) (i)
α
+ c− (α, θ1) (−i)

α
] (22)

−mµ
[

c+ (µ, θ2) (i)
µ−2

+ c− (µ, θ2) (−i)
µ−2

]}

.

Using inverse Laplace transform, Eq.(21) reduces to

unm (t) = unm (0)Eβ,1

(

−Atβ
)

(23)

where Eβ,1 (.) is well known Mittag-Leffler function. The
Fourier coefficients of the Eq.(12) can be found by

u0nm =
1

2π

π
∫

−π

π
∫

−π

u0 (x, y) e
−inxe−imydxdy, (24)

After some manipulations, we take unm (0) = u0nm and
also unm (t) = u0nmEβ,1

(

−Atβ
)

. Now, we can rewrite the
solution series after these computations:



u (x, y, t) =

∞
∑

n=1

∞
∑

m=1

u0nm (0)Eβ,1

(

−Atβ
)

einxeimy. (25)

4. GRÜNWALD-LETNIKOV APPROXIMATION FOR
NUMERICAL SOLUTION

In this section, we show the numerical solution of the prob-
lem by applying GL approximation for Caputo derivative.
Let we first give the relation between the left RL and
Caputo definitions:

aD
β
t u (t) =

C
a D

β
t u (t) +

m−1
∑

r=0

dr

dtr
u (t) |

x=a

(t− a)
r−β

Γ (r − α+ 1)

where m ∈ N, m−1 < β ≤ m, a ∈ R. Note that, under the

assumption

∣

∣

∣

∣

lim
a→−∞

dr

dtr
u (t) |

x=a

∣

∣

∣

∣

< ∞ for r = 0, 1, ...,m−1,

we have

−∞Dβ
xu (t) =

C
−∞Dβ

xu (t) .

It is also valid for the upper limit case and similar
assumption as follows

xD
β
+∞u (t) = C

x D
β
+∞u (t) .

We remind that the order of Caputo derivative is 0 < β ≤
1, the lower limit of derivative a = 0 and so we obtain

C
0 D

β
xu (t) = 0D

β
xu (t) − u (0)

t−β

Γ (1− β)
.

It is well known that if a function has suitable properties,
i.e. it has first-order continuous derivatives and its second-
order derivative is integrable, the β-order derivatives of
function in both RL and GL senses are the same. By this
property, we discretize the RL operator applying GL defi-
nition to Eq.(20) and therefore, we take the approximation
of Caputo derivative as

C
0 D

β
t unm (t) ≈

1

hβ

M
∑

r=0

w(β)
r unm (hM − rh)−unm (0)

(hM)
−β

Γ (1− β)

(26)
where M = t

h
represents the number of sub-time intervals,

h is step size and w
(β)
r are the coefficients of GL formula:

w
β
0 = 1, wβ

r =

(

1−
β + 1

r

)

w
β

(r−1) . (27)

Substituting Eq.(26) into Eq.(20) and after some arrang-
ing, we get

unm (hM) =
1

(

1
hβ w

(β)
0 +A

)

{

unm (0)
(hM)

−β

Γ (1− β)

−
1

hβ

M
∑

r=1

w(β)
r unm (hM − rh)

}

(28)

5. NUMERICAL EXAMPLE

In this section, we consider the following initial condition:

u (x, y, 0) = sinh(x+ y)

In Fig.1, we first validate the efficiency of numerical
method by comparison of analytical and numerical solu-
tions for x = π

5 , y = π
4 , t = 5, h = 0.01 and n = m = 10.

It is clear from the figure that the analytical solution is

in a good agreement with the numerical solution. Fig.2
shows the behaviour of problem under the variations of
µ values for x = π

5 , y = π
4 , t = 5, h = 0.01, β = 1,

α = 0.3 and θ1 = 0.3. Similarly, Fig.3 shows the response
of the problem for variable order of α for t = 5, β = 0.5,
µ = 1.5 and θ2 = 0.5. Fig.4 indicates changing behaviours
of problem with respect to the variations of α, β and
µ parameters for x = π

5 , y = π
4 , t = 5. In Fig.5, we

get the three dimensional surface of the problem (8) with
respect to x and t for y = π

4 , β = 0.7, α = 0.5, θ1 = 0.5
and µ = 1.8, θ2 = 0.1. Finally, we obtain the surface of
the problem (8) with respect to x and y for β = 0.7,
α = 0.5, θ1 = 0.5 and µ = 1.8, θ2 = 0.1 and h = 0.01
in Fig.6.
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6. CONCLUSIONS

In this paper, we have defined a two-dimensional anoma-
lous diffusion problem with time and space fractional
derivative terms. These have been described in sense of
Caputo and Riesz-Feller operators, respectively. We have
purposed to find the exact and the numerical solutions of
the problem under some assumptions. Therefore, we use
Laplace and Fourier transforms for analytical solution and
also prefer to apply GL definition. However, we first reduce
the main problem to a fractional differential equation with
time fractional term. By this way, we have obtained numer-
ical results more easily. Finally, we apply the formulations
to an example which are chosen arbitrarily. After that we
present some figures under different considerations about
variations of parameters. In addition, we deduce from the
comparion of the analytical and the numerical solutions
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that the GL approximation can be applied successfully to
such type of anomalous diffusion problems.
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