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Abstract: In this paper, the Homotopy Perturbation Method is applied to a solve nonlinear
programming problem which are governed by fractional order differential equations. We consider
the fractional derivative in the Caputo sense. Furthermore, the Multistage strategy is used
to investigate the relation between an equilibrium point of the fractional order system and
an optimal solution of the nonlinear programming problem. Because, it gives the behavior of
a dynamic system in arbitrary longtime interval while the standard Homotopy Perturbation
Method gives the optimal solution just only in the neighborhood of the initial time. The ability
of the method for obtaining approximate analytical solutions was shown by comparisons among
the Multistage Homotopy Perturbation Method, the standard Homotopy Perturbation Method
and the fourth order Runge-Kutta Method.
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1. INTRODUCTION

Optimization theory is aimed to find out the optimal
solution of problems which are defined mathematically
from a model arise in wide range of scientific and engi-
neering disciplines. Many methods and algorithms have
been developed for this purpose since 1940. The penalty
function methods are classical methods for solving nonlin-
ear programming (NLP) problem, see Luenberger (1973)
and Sun and Yuan (2006) for details. Also, differential
equation methods are alternative approaches to find so-
lutions to these problems. In this type of methods an
optimization problem is formulated as a system of ordi-
nary differential equations (ODEs) so that the equilibrium
point of this system converges to the local minimum of
the optimization problem. The methods based on ODEs
for solving optimization problems have been proposed by
Arrow et al. (1958), Rosen (1961), Fiacco and Mccormick
(1968), and Yamashita Yamashita (1976). Recently, Wang

et al. (2008), Jin et al. (2007) and Özdemir and Evirgen
(2009, 2010) have prepared a novel differential equation
approach for solving optimization problems.

In last decades, fractional calculus has drawn a wide at-
tention from many physicists and mathematicians, because
of its interdisciplinary application and physical meaning,
e.g. Miller and Ross (1993); Oldham and Spanier (1974);
Podlubny (1999). Fractional calculus deals with the gen-
eralization of differentiation and integration of noninte-
ger order. Several analytical and numerical methods have
been proposed for solving Fractional Differential Equations
(FDEs). The variational iteration method (VIM) was first
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introduced by He (1997), and applied to FDE He (1998).
The Adomian Decomposition Method (ADM) Adomian
(1988, 1994) is another approach for solving linear and
nonlinear problems. Moreover, the Homotopy Perturba-
tion Method (HPM) is another successful analytical ap-
proximate technique, which provides a solution to linear
and nonlinear problems, see He (1999, 2000). The HPM
yields a very rapidly convergent series solution, and usually
a few iterations lead to very accurate approximation of the
exact solution He (1999, 2000, 2003, 2006a,b, 2007). The
reason of this success is mainly based on combination of
the traditional perturbation method and homotopy tech-
niques. Recently, some techniques are adapted to the HPM
for getting the essential behavior of the differential equa-
tion system for large time t, such as Multistage and Padé
approximants. The homotopy perturbation method is used
to solve wide range of differential equations in literature.
For example, Baleanu and et al. have solved linear and
nonlinear Schrödinger equations by HPM, Baleanu et al.
(2009). Chowdhury and Hashim (2009) have employed
HPM for solving Klein Gordon equation. Furthermore,
adaptation of HPM with multistage strategy for numer-
ical and analytical solutions of the system of ODEs was
introduced by Hashim and Chowdhury (2008). Applica-
tions of multistage HPM for solving chaotic systems and
biochemical reaction model were illustrated in Chowdhury
et al. (2008); Hashim et al. (2008); Yu and Li (2009) ref-
erences therein. Additionally, Abdulaziz et al. (2008) used
HPM for solving system of FDEs. Odibat and Momani
(2008) presented HPM for fractional order quadratic Ric-
cati differential equation and fractional partial differential
equation in Momani and Odibat (2007).



This paper construct a system of FDEs which is purpose
to solve NLP problem with equality constraints. In order
to see the coincidence between the steady state solution of
the system of FDEs and the optimal solution of the NLP
problem in a long time t period, we used the Multistage
strategy.

The paper is organized as follows. In Section 2, the
fundamentals of optimization problem, fractional calculus
and HPM are briefly reviewed. In Section 3, the Multistage
HPM is adapted to the nonlinear system of FDEs for
solving NLP problem. In Section 4, the applicability and
efficiency of Multistage HPM is illustrated by comparison
among traditional HPM and fourth order Runge-Kutta
(RK4) method on some numerical examples. And finally
some concluding remarks are given in Section 5.

2. PRELIMINARIES

2.1 Optimization Problem

Consider the nonlinear programming problem with equal-
ity constraints defined by

minimize f(x),
subject to x ∈ M

(1)

with

M = {x ∈ R
n |h(x) = 0} ,

where f : Rn −→ R and h = (h1, h2, ..., hp)
T
: Rn −→ R

p

(p ≤ n). It is assumed that the functions in the problem are
at least twice continuously differentiable, that a solution
exists, and that ∇h(x) has full rank. To obtain a solution
of (1), the penalty function method solves a sequence
of unconstrained optimization problems. A well-known
penalty function for this problem is given by

F (x, µ) = f(x) + µ
1

γ

p
∑

l=1

(hl(x))
γ
, l = 1, 2, ..., p, (2)

where γ > 0 is constant and µ > 0 is an auxiliary penalty
variable. The corresponding unconstrained optimization
problem of (1) is defined as follows;

min F (x, µ) s.t. x ∈ R
n. (3)

Further information about NLP problem can be found in
Luenberger (1973) and, Sun and Yuan (2006).

2.2 Fractional Calculus

Now we will give some definitions and properties of the
fractional calculus Miller and Ross (1993); Oldham and
Spanier (1974); Podlubny (1999). We begin with the
Riemann-Liouville definition of the fractional integral of
order α > 0, which is given as

Iαf(x) =
1

Γ(α)

x
∫

0

(x− t)
α−1

f(t)dt, x > 0,

where Γ(.) is the gamma function.

Most commonly encountered fractional derivatives are
Riemann-Liouville and Caputo fractional derivative. The
definitions of these two derivatives are given as:

Riemann-Liouville fractional derivative (RLFD)

Dαf(x) = Dm
(

Im−αf(x)
)

=
1

Γ(m− α)

(

d

dt

)m
x
∫

0

(x− t)
m−α−1

f(t)dt,

Caputo fractional derivative (CFD)

CDα f(x) = Im−α (Dmf(x))

=
1

Γ(m− α)

x
∫

0

(x− t)
m−α−1

(

d

dt

)m

f(t)dt,

where m − 1 < α 6 m and m ∈ N. Note that Dm is the
usual integer differential operator of orderm. Furthermore,

IαDαf(x) = f(x)−
m−1
∑

s=0

f (s)(0+)
xs

s!
, m−1 < α 6 m (4)

is satisfied.

3. HOMOTOPY PERTURBATION METHOD

The brief outline of HPM is given in general by He (1999,
2003). For convenience, consider the following nonlinear
differential equation

L (u) +N (u) = f (r) , r ∈ Ω, (5)

with boundary condition

B

(

u,
∂u

∂t

)

= 0, r ∈ Γ,

where L is a linear operator, while N is nonlinear operator,
B is a boundary operator, Γ is the boundary of the
domain Ω and f (r) is a known analytic function. The He’s
homotopy perturbation technique defines the homotopy
v (r, p) : Ω× [0, 1] → R which satisfies

H (v, p) = (1− p) [L (v)− L (u0)]

+p [L (v)−N (v)− f (r)] = 0, (6)

where p ∈ [0, 1] is an embedding parameter, u0 is an initial
approximation which satisfies the boundary conditions.
The changing process of p from zero to unity is just that
of v (r, p) from u0 to u (r). The basic assumption is that
the solution of (6) can be expressed as a power series in p:

v = v0 + pv1 + p2v2 + ...

The approximate solution of nonlinear equation (5), there-
fore can be readily obtained:

u = lim
p→1

v = v0 + v1 + v2 + ... (7)

The convergence of the series (7) has been proved in He
(2000, 2007) and the asymptotic behavior of the series is
given in He (2006a,b).

3.1 The Runge-Kutta Method

The Runge-Kutta method is one of the well known numer-
ical methods for differential equations. The fourth order
Runge-Kutta method computes the approximate solutions
of the problem x

′

= f (t, x) by the following iterative
equations:



xn+1 = xn +
1

6
h (k1 + 2k2 + 2k3 + k4) ,

k1 = f (tn, xn) ,

k2 = f

(

tn +
1

2
h, xn +

1

2
hk1

)

,

k3 = f

(

tn +
1

2
h, xn +

1

2
hk2

)

,

k4 = f (tn + h, xn + hk3) ,

where h is the fixed step size ti − ti−1 and xn is the
estimated value of the solution at the time tn.

4. MULTISTAGE HPM FOR SYSTEM OF FDES

In this section, we solve nonlinear programming problems
which are governed by a system of fractional differential
equations. Consider the unconstrained optimization prob-
lem (3), an approach based on fractional dynamic system
can be described by the following FDEs

CDα x(t) = −∇xF (x, µ), (8)

subjected to the initial conditions

x(t0) = ci, i = 1, 2, ..., n

where CDα is the fractional derivative in Caputo sense of
x of order α (0 < α 6 1).

Note that, a point xe is called an equilibrium point
of (8) if it satisfies the right hand side of the Eq.(8).
For convenience of reader, we reformulate the fractional
dynamic system (8) as follow

CDα xi(t) = gi(t, µ, x1, x2, ..., xn), i = 1, 2, ..., n. (9)

The steady state solution of the nonlinear system of FDEs
(9) must be coincided with local optimal solution of the
NLP problem (1).

In order to find the solution of the system (9), we use
Multistage HPM. Because the multistage strategy is pro-
vided to reach steady state solution in whole time horizon
rather than traditional HPM. According to the Eq.(6), we
construct the following Homotopy

CDα xi(t) = pgi(t, µ, x1, x2, ..., xn), (10)

where i = 1, 2, ..., n and p ∈ [0, 1]. If p = 0, Eq.(10)
becomes the linear equation

CDα xi(t) = 0,

and when p = 1, the homotopy (10) turns out to be the
original system given in (9).

We assume that the System (9) is defined on the time
interval t ∈ [0, T ]. We divide the time interval into N equal
length subintervals ∆T = Tj − Tj−1, j = 1, 2, ..., N with
T0 = 0 and TN = T . Using the parameter p, we expand
the solution xi in the following form:

xi (t) = xi,0 (t)+pxi,1 (t)+p2xi,2 (t)+ ..., i = 1, 2, 3, ..., n.
(11)

Also, we take the initial approximations as below

x1,0 (t) = x1 (t
∗) , x2,0 (t) = x2 (t

∗) , ..., xn,0 (t) = xn (t
∗) ,
(12)

where t∗ is the left end point of each subinterval and initial
conditions as

x1,1 (t
∗) = 0, x2,1 (t

∗) = 0, ..., xn,1 (t
∗) = 0

...

x1,K (t∗) = 0, x2,K (t∗) = 0, ..., xn,K (t∗) = 0

...

Substituting Eq.(11) into (10), and equating the coeffi-
cients of the terms with identical power of p, we get

p0 : CDα xi,0(t) = 0
p1 : CDα xi,1(t) = gi,1(t, µ, x1,0, ..., xn,0)

...
pK : CDα xi,K(t) = gi,K(t, µ, x1,0, ..., xn,1;x1,1, ..., xn,1; ...;

x1,K−1, ..., xn,K−1)

(13)

where i = 1, 2, 3, ..., n and the function gi,1, gi,2, ... satisfy
the following equation:

gi(t, µ, x1,0 + px1,1 + · · · , x2,0 + px2,1 + · · · , xn,0 + pxn,1 + · · · )

= gi,1(t, µ, x1,0, ..., xn,0) + pgi,2(t, µ, x1,0, ..., xn,0;x1,1, ..., xn,1)

+p2gi,3(t, µ, x1,0, ..., xn,0;x1,1, ..., xn,1;x1,2, ..., xn,2) + · · · .
For solving linear system (4), we apply the inverse operator
Iα both side of equations. Therefore, the components xi,k

(i = 1, 2, ..., n ; k = 0, 1, 2, ...) of the multistage HPM can
be determined. In order to carry out the iterations for
every subinterval, we have to clarify initial approximations
(12). For this purpose we set t∗ = t0. In Multistage HPM,
the iterations provide appropriate value of solutions by
means of the previous K-term approximations Φi,K of
the preceding subinterval. Consequently, the approximate
solution of (9) can be denoted as follow

xi(t) = Φi,K =

K−1
∑

k=0

xi,k, 1 6 i 6 n. (14)

Here the effectiveness and the applicability of the approach
especially depend on choosing ∆T and the number of term
in the approximate solution (14).

5. NUMERICAL IMPLEMENTATION

To illustrate the effectiveness of the Multistage HPM
according to the HPM and fourth order Runge-Kutta
method, some test problems are taken from Hock and
Schittkowski (1981); Schittkowski (1987). Methods are
coded in Maple and digits of the variables are set to 15
in all the calculations done in this paper.

Example 1 Consider the following nonlinear program-
ming problem [Schittkowski (1987), Problem No: 216]

minimize f(x) = 100
(

x2
1 − x2

)2
+ (x1 − 1)

2

subject to h(x) = x1 (x1 − 4)− 2x2 + 12 = 0.
(15)

The optimal solution is x∗ = (2, 4)
T
. For solving the above

problem, we convert it to an unconstrained optimization
problem with quadratic penalty function (2) for γ = 2,
then we have



F (x, µ) = 100
(

x2
1 − x2

)2
+ (x1 − 1)

2

+
1

2
µ (x1 (x1 − 4)− 2x2 + 12)

2
,

where µ ∈ R
+ is an auxiliary penalty variable. The cor-

responding nonlinear system of FDEs from (8) is defined
as

CDαx1(t) = −400(x2
1 − x2)x1 − 2(x1 − 1)

− µ(2x1 − 4)(x2
1 − 4x1 − 2x2 + 12)

CDαx2(t) = 200(x2
1 − x2) + 2µ(x2

1 − 4x1 − 2x2 + 12),







(16)

where 0 < α 6 1. The initial conditions are x1(0) = 0 and
x2(0) = 0. Utilizing the Homotopy (10) with auxiliary
penalty variable µ = 800 and step size ∆T = 0.00001, the
terms of the Multistage HPM solutions (14) are acquired.
In Figure 1 and Figure 2, we show the approximate-exact
solution x1 and x2 of the problem (15) for the derivative
order α = 1 and α = 0.9. We see that for α = 1 and
α = 0.9 our solutions obtained using the Multistage HPM
are in good agreement with the RK4 method solution on

x∗ = (2, 4)
T
. Furthermore, numerical results in Table 1

and Table 2 show that the Multistage HPM for α = 0.9
has better performance than for α = 1.

Fig. 1. Comparison of x1; Dash: HPM for α = 0.9,
Dashdot: MHPM(∆T = 0.00001) for α = 1,
Solidline: MHPM(∆T = 0.00001) for α = 0.9, ©:
RK4(∆T = 0.00001) for α = 1

Fig. 2. Comparison of x2; Dash: HPM for α = 0.9,
Dashdot: MHPM(∆T = 0.00001) for α = 1,
Solidline: MHPM(∆T = 0.00001) for α = 0.9, ©:
RK4(∆T = 0.00001) for α = 1

Table 1. A Comparison of x(t) between HPM
and MHPM for α = 0.9

HPM (α = 0.9) MHPM (α = 0.9)

t x1(t) x2(t) x1(t) x2(t)

0.000 0.0000 0.0000 0.0000 0.0000
0.001 −0.69E + 07 −0.11E + 07 1.9991 3.9996
0.002 −0.84E + 08 −0.14E + 08 1.9993 3.9998
0.003 −0.36E + 09 −0.62E + 08 1.9993 3.9998
0.004 −0.10E + 10 −0.17E + 09 1.9993 3.9998
0.005 −0.23E + 10 −0.39E + 09 1.9993 3.9998

Table 2. A Comparison of x(t) between MHPM
and RK4 for α = 1

MHPM (α = 1) RK4 (α = 1)

t x1(t) x2(t) x1(t) x2(t)

0.000 0.0000 0.0000 0.0000 0.0000
0.001 1.9338 3.8549 1.9338 3.8549
0.002 1.9916 3.9915 1.9916 3.9915
0.003 1.9986 3.9992 1.9986 3.9992
0.004 1.9993 3.9997 1.9992 3.9997
0.005 1.9994 3.9998 1.9993 3.9998



Example 2 Consider the equality constrained optimiza-
tion problem [Schittkowski (1987), Problem No: 79]

minimize
f(x) = (x1 − 1)

2
+ (x1 − x2)

2

+ (x2 − x3)
2
+ (x3 − x4)

4
+ (x4 − x5)

4

subject to h1(x) = x1 + x2
2 + x3

3 − 2− 3
√
2 = 0

h2(x) = x2 − x2
3 + x4 + 2− 2

√
2 = 0

h3(x) = x1x5 − 2 = 0.
(17)

The solution of (17) is

x∗ ≈ (1.191127, 1.362603, 1.472818, 1.635017, 1.679081)T

and this is not an exact solution. The equality constrained
optimization problem (17) is transformed to an uncon-
strained optimization problem by using quadratic penalty
function (2) for γ = 2 as follows

F (x, µ) = f (x) +
1

2
µ

3
∑

l=1

(hl(x))
2
,

where µ ∈ R
+ is an auxiliary penalty variable.

The corresponding nonlinear system of FDEs from (8) is
defined as

CDαx(t) = −∇f(x)− µ∇h(x)h(x), (18)

where 0 < α 6 1. The initial condition is x(0) =

(2, 2, 2, 2, 2)
T

that is not feasible. Using the homotopy
(10) with auxiliary penalty variable µ = 75 and step
size ∆T = 0.0001, the multistage HPM approximate-exact
solutions (14) are obtained. In Table 3-7, the comparison
of the solutions xi, i = 1, 2, 3, 4, 5 between the HPM for
α = 0.9, the multistage HPM for α = 0.9 and α = 1 with
the classical RK4 method are given, respectively. Here, the
solutions continuously depend on the order of fractional
derivative. Furthermore, our approximate solutions using
the multistage HPM are in good agreement with the
RK4 method solution and the optimal solution of the
optimization problem (17).

Table 3. A Comparison of x(t) between HPM
and MHPM for α = 0.9

HPM (α = 0.9) MHPM (α = 0.9)

t x1(t) x2(t) x1(t) x2(t)

0 2 2 2 2
2 0.160E + 8 0.620E + 8 1.198931 1.369223
10 0.288E + 9 0.112E + 10 1.191090 1.362530
15 0.594E + 9 0.230E + 10 1.191090 1.362530
20 0.100E + 10 0.388E + 10 1.191090 1.362530
30 0.209E + 10 0.811E + 10 1.191090 1.362530

Table 4. A Comparison of x(t) between MHPM
and RK4 for α = 1

MHPM (α = 1) RK4 (α = 1)

t x1(t) x2(t) x1(t) x2(t)

0 2 2 2 2
2 1.182161 1.352495 1.191010 1.359541
10 1.191050 1.362499 1.191082 1.362524
15 1.191084 1.362498 1.191090 1.362530
20 1.191082 1.362472 1.191090 1.362530
30 1.191113 1.362541 1.191090 1.362530

Table 5. A Comparison of x(t) between HPM
and MHPM for α = 0.9

HPM (α = 0.9) MHPM (α = 0.9)

t x3(t) x4(t) x3(t) x4(t)

0 2 2 2 2
2 0.301E + 9 −0.420E + 7 1.468744 1.616076
10 0.546E + 10 −0.756E + 8 1.472774 1.634738
15 0.113E + 11 −0.156E + 9 1.472774 1.634738
20 0.191E + 11 −0.263E + 9 1.472774 1.634738
30 0.395E + 11 −0.550E + 9 1.472774 1.634738

Table 6. A Comparison of x(t) MHPM with
RK4 for α = 1

MHPM (α = 1) RK4 (α = 1)

t x3(t) x4(t) x3(t) x4(t)

0 2 2 2 2
2 1.478320 1.661326 1.474039 1.641529
10 1.472792 1.634827 1.472778 1.634755
15 1.472786 1.634792 1.472774 1.634738
20 1.472798 1.634853 1.472774 1.634738
30 1.472765 1.634750 1.472774 1.634738

Table 7. Comparison of x(t) between HPM and
MHPM with RK4 solutions for different value

of α.

HPM (α = 0.9) MHPM (α = 0.9) MHPM (α = 1) RK4 (α = 1)

t x5(t) x5(t) x5(t) x5(t)

0 2 2 2 2
2 0.102E + 7 1.668076 1.691867 1.679209
10 0.183E + 8 1.679130 1.679187 1.679140
15 0.378E + 8 1.679130 1.679136 1.679130
20 0.637E + 8 1.679130 1.679142 1.679130
30 0.133E + 9 1.679130 1.679093 1.679130

6. CONCLUSIONS

In the present work, the Homotopy Perturbation Method
(HPM) has been successfully used to obtain approxi-
mate analytical solutions of nonlinear programming (NLP)
problems. Initially, the NLP problem is reformulated by
a system of Fractional Differential Equations (FDEs). In
order to see the essential behavior of the system of FDEs,
the Multistage strategy adapted to the HPM. The nu-
merical comparison among the fourth order Runge-Kutta
(RK4), the Multistage HPM (α = 1 and α = 0.9) and
HPM (α = 0.9) shows that the Multistage HPM (α = 0.9)
performs rapid convergency to the optimal solutions of the
optimization problems. Consequently, these results verify
the efficiency of the Multistage HPM as a practical tool
for solving NLP problem.
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