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Abstract

Probabilistic interpretation of transition from the dispersive transport regime to the quasi-
Gaussian one in disordered semiconductors is given in terms of truncated Lévy distributions.
Corresponding transport equations with fractional order derivatives are derived. We discuss
physical causes leading to truncated waiting time distributions in the process and describe in-
fluence of truncation on carrier packet form, transient current curves and frequency dependence
of conductivity. Theoretical results are in a good agreement with experimental facts.
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1. INTRODUCTION

Various transport regimes can be observed in disordered
semiconductors: normal regime characterized by Gaus-
sian statistics and standard diffusion equation, and differ-
ent types of anomalous (non-Gaussian) transport. Among
anomalous transport regimes, the dispersive transport is
distinguished especially (Scher & Montroll (1975); Zvya-
gin (1984); Madan & Shaw (1988)). The dispersive
diffusion packet has a non-Gaussian form, but even so
it maintains its shape and its spatial extent depends on
time. In other words, the process reveals the property
of self-similarity (Scher & Montroll (1975)). Dispersive
transient current curves are sufficiently differ from the
normal ones corresponding to Gaussian transport. Current
decays according to very stretched law, two power law
sections are picked out: I(t) ∝ t−1+α for t < tT, and
I(t) ∝ t−1−α for t > tT. The parameter 0 < α < 1 called
the dispersion parameter depends on material structure
and transport mechanism. For some mechanisms, temper-
ature dependence is observed (Zvyagin (1984)). Scher &
Montroll (1975) have broken through in understanding of
probability causes of dispersive transport, α is interpreted
as an exponent of power law asymptotes in a distribution
of sojourn times T in localized states (waiting times). Since
α < 1, the mean value 〈τ〉 diverges. This leads to non-
decreasing relative fluctuations of the number of jumps
between localized states. As a consequence we have non-
Gaussian form of a diffusion packet and anomalous law of
packet widening (∆ ∝ tα/2).
The known approaches (such as the Scher-Montroll
model (1975), the Arkhipov-Rudenko theory (1982, 1983))
connect the anomalous-normal transition in the same ma-
terial with increase of α to 1 because of changing outer
conditions (for example, temperature). Here, we consider
another case, the transition occurs due to changes of scale
? Authors are grateful to the Russian Foundation for Basic Research
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parameters. For small transient times, i. e. small values
of sample thickness and/or large values of voltages, nor-
malized transient current curves are practically universal
and these curves correspond to dispersive transport. But
in samples with larger thickness, or at smaller voltages
(at the same temperatures), transient current curves have
plateau (Bässler (1993); Tyutnev et al. (2005)), that is
typical for Gaussian transport. Results in this case are of-
ten described in frames of the quasi-equilibrium transport
theory. In other words, at increasing transient times, the
tendency towards the quasi-Gaussian statistics is observed.
This tendency can not be explained by change of the
dispersive parameter α, it is a spatiotemporal scale effect.

Electron transport in polymers is usually modelled as a
hopping process. Experimental time-of-flight results for
polymers come to an agreement with the theory, when the
Gaussian form of an energy distribution of localized states
is taken (Bässler (1993)). Transition from dispersive type
of transport to the quasi-Gaussian one can be explained
by such form of density of localized states.

The goal of the present paper is to give a probabilistic
interpretation of transition from the dispersive transport
regime to the quasi-Gaussian one due to change of the
scale parameters characterizing the process. The addi-
tional question is to determine main features of energetic
and/or spatial distributions of traps leading to the dis-
cussed phenomenon. Truncated Lévy distributions intro-
duced by Mantegna & Stanley (1994) play an impor-
tant role in our interpretation. We derive correspondent
equations with fractional order derivatives and discuss the
influence of truncation on transient current curves and
frequency dependence of conductivity.

2. DISPERSIVE TRANSPORT AND FRACTIONAL
DIFFERENTIAL APPROACH

Dispersive (non-Gaussian) transport (Madan & Shaw
(1988), Zvyagin (1984)) is observed in many disordered



materials differ in its microscopical structure. A compar-
ison of available data suggests the presence of universal
transport properties unrelated to the detailed atomic and
molecular structure of a substance. The fractional differ-
ential approach is often applied to description of dispersive
transport (Barkai (2001); Uchaikin & Sibatov (2005,
2008); Sibatov & Uchaikin (2009)).

The Riemann-Liouville type fractional derivatives

0D
α
t f(t) =

1

Γ(1− α)
d

dt

t∫

0

f(t′)dt′

(t− t′)α , 0 < α < 1

were for the first time applied to description of dispersive
transport by Arkhipov et al. (1983b). The authors ex-
pressed the relationship between concentrations of free and
localized carriers through the fractional integral. In later
papers they use a different approximate relation between
concentrations of localized and free carriers, which they
called the master dispersive transport equation. This rela-
tion is believed to hold for any density of localized states
and permits expressing results through elementary func-
tions in the case of an exponential density. The Arkhipov-
Rudenko master equation leads to a diffusion equation
with a variable diffusion coefficient and mobility (Arkhip-
iov et al. (1983a)).

On the base of the kinetic trapping-emission equations,
Tiedje (1984) derived a transport equation for free carrier
concentration. The inverse Laplace transform of this equa-
tion is nothing but a fractional differential equation (Siba-
tov & Uchaikin (2007)).

Barkai (2001) made use of the fractional Fokker-Planck
equation to account for transient photocurrent relax-
ation in amorphous semiconductors. He showed the agree-
ment between selected results of the fractional differen-
tial approach and results predicted by the Scher-Montroll
model (1975).

Power-law decay of photoluminescence in amorphous semi-
conductors was described in Refs (Seki et al. (2003,
2006)) in frame of the generalized random walk model with
recombination by tunnel radiative transitions. Recombina-
tion was limited by dispersive diffusion of the carriers. In
the framework of this model, Seki et al. (2006) compiled
a fractional differential equation for the first passage time
distribution density. The recombination rate was found
using the integral Laplace transform of this equation.

As shown in Refs (Uchaikin (1999); Sibatov & Uchaikin
(2007)), the main asymptotic terms in the Scher-Montroll
model satisfy fractional differential equations, the Green
functions of which are fractionally stable densities.

3. THE SCHER-MONTROLL MODEL

Continuous time random walk (CTRW) model, introduced
by Scher & Montroll (1975), provided the first detailed
explanation of all the main patterns of current behavior
in time-of-flight experiments with amorphous semiconduc-
tors.

The main assumptions of this model are as follows:

(1) The transport of charge carriers is a jumplike random
walk in which the walkers change their positions at
random instants of time.

(2) Carrier jumps are independent of one another, and
time intervals between them (waiting times) are inde-
pendent, identically distributed random variables T .

(3) Waiting times are characterized by asymptotically
power-law distribution:

P{T > t} ∝ t−α, t→∞, 0 < α < 1. (1)

Scher & Montroll (1975) simulated charge transfer in
disordered semiconductors as carrier hopping within the
model grid of localized states. The grid constitutes a
regular cubic lattice, each cell of which contains randomly
distributed sites (localized states). The waiting time till
the next hopping depends on the distance to the nearest
neighbor sites. The cell residence time distribution can
obey the power law owing to site spatial disorder in a cell.

As is known, the description of normal transport is based
on the central limit theorem of the probability theory. For
random quantities distributed according to asymptotically
power law, divergence of dispersion for α < 2 and diver-
gence of mathematical expectation for α < 1 make this
theorem inapplicable, which necessitates the application
of the generalized limit theorem.

The generalized limit theorem. Let random quantities
Xj be independent and identically distributed, and satisfy
the following conditions

P(X > x) ∼ a+x
−α, x→∞,

P(X < −x) ∼ a−x−α, x→∞,
0 < α ≤ 2, a+ ≥ 0, a− ≥ 0 and a+ + a− > 0. Then, An

and Bn > 0, sequences exist such that, as n → ∞, one
finds 


n∑

j=1

Xj −An



/

Bn
d∼S(α,β),

where S(α,β) is the stable random variable with exponent
α and asymmetry parameter β = (a+ − a−)/(a+ + a−).
Stable random quantities can be defined through charac-
teristic functions having the form (form A) (Uchaikin &
Zolotarev (1999)):

g(α,β)(k) = exp{−|k|α[1−iβ tan(απ/2) sign(k)]}, α 6= 1,

g(1,β)(k) = exp(−|k|).
Certainly, there are an infinite number of sequences
of normalizing coefficients An, Bn showing similar
asymptotic behavior as n → ∞. By way of example,
they can be defined in the following way (a = 〈X〉 and
c = a+ + a−):

α = 2 An = na, Bn =
√
cn lnn,

α ∈ (1, 2) An = na, Bn = (πcn/[2Γ(α) sin(απ/2)])1/α,
α = 1 An = βcn lnn, Bn = πcn/2,

α ∈ (0, 1) An = 0, Bn = (πcn/[2Γ(α) sin(απ/2)])1/α.

In the Scher-Montroll model, waiting times T (positive
random quantities) are distributed according to an asymp-
totically power law. Therefore, at macroscopic scales, the
first passage time distribution, conduction current density,
and concentration of delocalized carriers considered as



functions of time should have the form of stable density
distribution.

The main characteristics of the CTRW model are waiting
time and jump vector distributions, ψ(t) and p(r), re-
spectively. Spatial distribution density p(r, t) of a particle
executing random walks and initially located at the origin
of coordinates is defined in terms of the Fourier-Laplace
transform (Montroll & Weiss (1965))

̂̃p(k, s) = 1− ψ̃(s)
s

1

1− p̂(k)ψ̃(s)
, (2)

where

̂̃p(k, s) =
∫

R

dr eikr

∞∫

0

dt e−stp(r, t)

is the Fourier-Laplace transform of normalized particle
concentration, p̃(k) is the Fourier transform of path dis-

tribution density, and ψ̂(s) is the Laplace transform of
waiting time distribution density. Substituting into Eq. (2)
the asymptotic series expansion of the Laplace image of
waiting time distribution density with the power-law tail

ψ̂(s) ∼ 1− sα/cα, s¿ c,

along with asymptotic expansion of the Fourier image of
path distribution density:

p̃(k) ∼ 1 + c1ik− c2k2, |k| ¿ 1/|c1|,
and applying the Tauberian theorem, we obtain

̂̃p(k, s) = c−αsα−1

−c1ik + c2k2 + sα/cα
.

Rewriting the last expression in the form

[sα − c1c
αik + c2c

αk2] ̂̃p(k, s) = sα−1

and applying inverse Fourier and Laplace transformations
yield

0D
α
t p(r, t) + K∇p(r, t)− C∇2p(r, t) =

t−α

Γ(1− α)δ(r), (3)

where K and C are vectorial and scalar constants.

4. TRUNCATED WAITING TIME DISTRIBUTIONS

It has been emphasized above that the self-similar disper-
sive transport in disordered semiconductors is character-
ized by asymptotically power law distributions of sojourn
times T of carriers (electrons and/or holes) in localized
states: P{T > t} ∝ t−α, t → ∞, where 0 < α < 1
is the dispersion parameter. Mean value of such random
variables diverges.

It is naturally to suppose that an asymptotically power
law distribution of waiting times can be truncated. This
truncation can be caused by finite values of mobility gap
at multiple trapping or by limitation of jump lengths
at hopping. Secondary mechanism acting in parallel to
the main transport mechanism can be responsible for the
truncation. We shall consider an influence of truncation
of power law distributions of waiting times on properties
of dispersive transport. This influence should become
apparent in scale effects.

Mantegna and Stanley (1994) introduced truncated Lévy
flights, a process showing a slow convergence to a Gaus-
sian. The truncated Lévy flight is a Markovian jump

Figure 1. Waiting time PDF’s for different types of densi-
ties of localized states in the multiple trapping model:
exponential (1), Gaussian (2) and rectangular (3).

process, with the length of jumps showing a power-law
behavior up to some large scale. At large scales distri-
bution has cutoffs and thus have finite moments of any
order. Smoothly (exponentially) truncated Lévy flights,
introduced by Koponen (1995), constructed on Mantegna
and Stanley’s ideas, allows to give a convenient analytic
representation of results.

In our model, jump lengths are distributed exponentially
and waiting times have asymptotically truncated power
law distributions. We take this distribution in the form

Ψ(t) = P{T > t} ∼ (ct)−α

Γ(1− α) exp(−γt), (4)

γ ¿ c, tÀ c−1.

Since the ”heavy” power law tail is truncated, all moments
of random variable are finite, and consequently, a distri-
bution of a sum of large number of such random variables
tends to the Gaussian law. However, this convergence is
very slow and stable Lévy distributions play a role of
intermediate asymptotics.

In Fig. 1, normalized waiting time distributions numeri-
cally calculated for three forms of density of states (expo-
nential, Gaussian and rectangular) in the multiple trap-
ping model are presented. For all three cases, an average
energy of states ε0 is the same. For exponential DOS
waiting times are distributes according to the asymptotical
power law with the exponent α = ε0/kT . For the case of
the Gaussian DOS, sojourn times in traps are distributed
according to a wide law but all moments finite. For the
case of rectanguler DOS, waiting times have distribution
that can be approximated by a stretched exponential law.

Transport is dispersive in all time scales only in the case
of ideal exponential energy distribution of localized states.
For two other DOS, transport takes features of the normal
transport in asymptotics of large times.



5. TRANSPORT EQUATION FOR THE CASE OF
TRUNCATED WAITING TIME DISTRIBUTIONS

Connection between concentrations of delocalized (con-
duction) nc and trapped nt carriers is expressed by the
formula

nt(r, t) =

t∫

0

τ−1
0 nc(r, t

′) Ψ(t− t′) dt′,

where τ0 is a mean time of delocalized state. Passing on
to Laplace transforms, taking into account the relation

Ψ̂(s) =

∞∫

0

e−stΨ(t) dt ∼ c−α(s+ γ)α−1, s¿ c,

we obtain n̂t(r, s) ∼ c−ατ−1
0 (s+γ)α−1n̂c(r, s). The inverse

Laplace transformation leads to the equation with deriva-
tive of fractional order:

nc(r, t) ∼ cατ0 e−γt
0D

1−α
t eγt nt(r, t), tÀ c−1. (5)

Substituting the last relation into the continuity equation

∂n(r, t)

∂t
+ div

(
µE nc(r, t)−D ∇nc(r, t)

)
= 0

and taking into account the fact that most of carriers are
trapped, i. e. n(r, t) ≈ nt(r, t), we arrive at

∂n(r, t)

∂t
+

+div
[
e−γt

0D
1−α
t eγt (K n(r, t)− C ∇n(r, t))

]
= 0, (6)

where K = cατ0µE, C = cατ0D are coefficients, and
µ, D, E are a mobility, a diffusion coefficient and a field
intensity, respectively. If α → 1, Eq. (6) becomes the
standard Fokker-Planck equation describing the normal
transport. When γ = 0, the equation coincides with the
dispersive transport equation.

6. SCALE EFFECT OF TRANSITION FROM THE
DISPERSIVE REGIME TO THE GAUSSIAN ONE

Fig. 2 represents numerically calculated spatial distribu-
tions for one-sided random walks. With different waiting
time distributions, one can see the transition from frac-
tionally stable statistics to Gaussian statistics for waiting
time distribution having truncated power law tail. The up-
per graph represents results for exponentially distributed
times between jumps. In the middle graph, waiting times
are not truncated, the exponent of the power law tail is
equal to 0.5. In the lower graph, waiting time distribution
has the sharp truncation at time τtr = 1500 (arbitrary
units). The exponential distribution of waiting times has
the same mathematical expectation as truncated power
law in the lower graph. In the case of exponentially dis-
tributed waiting times, we see the fast convergence to the
Gaussian distribution, in the second case, the distribution
becomes fractionally stable law at some time t and main-
tains the form for all following times. In case of truncated
power law tails, the crossover between fractionally stable
and Gaussian statistics is observed.

Conduction current density at pulsed injection for the
case of exponentially truncated power-law waiting time
distributions is expressed as

j(x, t) = eN exp
[x
l

(γ
c

)α
− γt

]
×

Figure 2. The transition from the fractionally stable statis-
tics to the Gaussian one in the case of a one-sided
random walk with waiting times distributed according
to law having truncated power law tail. Solid lines
represent Gaussian PDFs, dotted lines correspond to
fractionally stable densities.

×c
(x
l

)−1/α

g(α)

(
ct
(x
l

)−1/α
)
. (7)

Transient current density is found by substituting this
expression into the formula

I(t) =
1

L

L∫

0

j(x, t)dx.

If α = 1/2, the expression for transient current takes the
form:



Figure 3. Transient photocurrent in the case of truncated
power law distribution of waiting times for different
values of L/l-ratio.

I(t) =
eNl
√
c

L





exp(−γt)− exp

(
−
(√

γt− 1
2
√
τ

)2
)

√
πt

+

+
√
γ

[
erf(
√
γt)− erf

(√
γt− 1

2
√
τ

)]}
(8)

Fig. 3 illustrates transformation of transient current curves
with increasing L/l-ratio. When the time of flight is
much smaller than the truncation time γ−1, the trans-
port remains dispersive and does not pass to Gaussian
asymptotics. If ttr is compared with γ−1 the shape of
the transient current curves undergoes modification, and
they become inconsistent with the curves for normal and
dispersive transport. For ttr À γ−1, transport in the long-
time asymptotic regime becomes quasi-Gaussian.

7. FREQUENCY DEPENDENCE OF
CONDUCTIVITY

The frequency dependence of the real component of con-
ductivity in disordered semiconductors is usually fairly
well described by the power law:

Re σ(ω) = Aωγ , (9)

where the exponent γ normally takes on values from 0.7
to 1 (Zvyagin (1984)). The dependence of such type is
characteristic of a very broad class of materials.

Conductivity is related to mobility by the expression

σ(ω) = eηµ(ω).

Here, η is the concentration of effective carriers. The
Nyquist formula (generalized Einstein relation) linking
mobility with the diffusion coefficient at nonzero frequen-
cies has the form

µ(ω) = (e/kT )D(ω),

where the noise spectrum according the Wiener-Khintchin
theorem is expressed through the Fourier transform of the
velocity autocorrelation function

Re D(ω) =

∞∫

0

cos(ωt)〈v(t)v(0)〉dt. (10)

Figure 4. Theoretical frequency dependencies of conduc-
tivity for different α values.

This formula is important in that ”a knowledge of the
fluctuations of the equilibrium ensemble in the absence
of the electric field permits a calculation of the linear
response of the system (mobility)” (Scher & Lax (1973a)).
Scher & Lax showed that relation (10) can be written out
as:

D(ω) = −1

6
ω2

∞∫

0

dt e−iωt
〈
[r(t)− r(0)]2

〉
. (11)

The latter relation is possible to rewrite in the form

D(ω) = −ω2

∞∫

0

dx x2 [ñ(x, s)]s=iω , (12)

where ñ(x, s) is the Laplace image of n(x, t) with respect
to t.

Equation (6) for one-dimensional case without field as-
sumes the form:

∂n(x, t)

∂t
= C e−γt ∂

1−α

∂t1−α
eγt

∂2n(x, t)

∂x2
.

The Laplace transform of this equation yields

s ñ(x, s) = C (s+ γ)1−α ∂2ñ(x, s)

∂x2
+ δ(x).

Substituting the solution of this equation,

ñ(x, s) =
s−1/2(s+ γ)(α−1)/2

√
C

exp

(
− |x|√

C

√
s(s+ γ)α−1

)

into relation (12) gives

D(ω) = 2C(γ + iω)1−α.

Hence follows

Re σ(ω) = (e2η/kT ) Re D(ω) =

= 2C(e2η/kT ) (γ2 + ω2)(1−α)/2 cos((1− α) arctan(ω/γ)). (13)

For frequencies ω À γ, it is easily shown that

Re σ(ω) = 2C(e2η/kT ) ω1−α sin(πα/2).

Figure 4 represents frequency-dependent conductivity
curves calculated from Eq. (13). Formula (13) predicts
the power-law dependence of conductivity on ω at high
frequencies in the dispersive transport case. The exponent
may acquire values from 0 to 1; in normal transport (α→



1), conductivity is totally frequency independent. In trans-
port driven by the multiple trapping mechanism, expo-
nent α grows linearly with temperature. Consequently, the
exponent s = 1− α in the frequency dependence of con-
ductivity in the case of alternating current must linearly
decrease with increasing temperature. Such temperature
behavior has been reported for a variety of semiconductors
(see, for instance, Ghosh et al. (2006)).

8. CONCLUSION

Here, transition from the dispersive transport regime to
the quasi-Gaussian one in disordered semiconductors is
interpreted in terms of truncated Lévy distributions of
waiting times. So, polymer with Gaussian density of local-
ized states is not exclusive representative of materials that
can show such behavior. The phenomenon is more general
and it is based on statistical rules such as generalized limit
theorem. Analytical results are supported by numerical
simulations.
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H. Bässler. Charge transport in disordered organic photo-
conductors. Phys. Stat. Sol. (b) 175:15–56, 1993.

P. Ghosh, A. Sarkar, A. K. Meikap, S. K. Chattopadhyay,
S. K. Chatterjee, M. Ghosh. Electron transport proper-
ties of cobalt doped polyaniline. J. Phys. D: Appl. Phys.
39:3047–3052, 2006.

I. Koponen. Analytic approach to the problem of conver-
gence of truncated L’evy flights towards the Gaussian
stochastic process. Phys. Rev. E 52:1197-1199, 1995.

A. Madan, M. P. Shaw. The Physics and Applications
of Amorphous Semiconductors. Academic Press Inc.,
Boston, 1988.

R. N. Mantegna and H. E. Stanley. Stochastic process with
ultraslow convergence to a Gaussian: The truncated
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