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Abstract: This paper addresses a robust synchronizatioracofiénal order unified systems whilst some
parameters need to be identified. Based on thén§litiode theory, a control law is proposed to resdi
robust synchronization and parameter identificatbtwo fractional order unified systems especiatly
presence of discrepancy in the initial conditiofisis is also done when the slave system is pertublye
the uncertainties in the dynamic and parametethefmaster are made unknown. A novel switching
surface is proposed to perform the task and réiseconvergence rate of the error in the closed-loop
sliding mode control. Also Unlike many well-knowrethods of the sliding mode control, no knowledge
on the bound of uncertainty and disturbance isirequSimulation approach is given to assess vidida
and quality of the analysis and design.
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1. INTRODUCTION

Chaotic systems have held researchers’ intereghanpast
decades. Such nonlinear systems can model variatusah

Linear feedback control of chaos in this systerstiglied. In
(Li et al., 2003) chaos synchronization of fractibrorder
chaotic systems are studied.

and man-made systems, and are known to have gréatnified chaotic system is a chaotic system wtdelpends

sensitivity to initial conditions. This means twqgstem
starting trajectories from their arbitrary and afinthe same
initial states could evolve in dramatically diffatefashions,
and soon become uncorrelated and unpredictableedent
years, a new direction of chaos research has enherge
which fractional order calculus is applied to dymasystems
(Wang and Yu, 2008).

Fractional calculus is in essence as an extendiamdinary
calculus, with almost 300-year-old history. In epitf the
long history, the application of fractional calcsilto physics
and engineering are just a recent focus of intdRatliubny,
1999). It has been found that the behaviour of namysical
systems can be properly described by using thdidred
order system theory. For example heat conductiens@n
and Jeffreys, 1997), quantum evolution of complgstems
(Kusnezov et al.,, 1999), and diffusion waves (Ey<h
1996) are known systems governed by the fractiondér
equations. In fact, real world process generallynost likely
is fractional order system (Torvik and Bagley, 1p84lore
recently, there is a new trend to investigate thetrol and
dynamics of fractional order dynamical systems.

Ahmad (and Sprott, 2003) has shown that nonlinbaotic

on a parameter(1[0,1]. If 0<a <0.8 , the unified chaotic

system reduces to the generalized Lorenz chacsiesy the
unified chaotic system is reduced to the Ll chastistem
when @ =0.8. 0.8<a < 1 makes the unified chaotic system
the generalized Chen chaotic system. Several ressEr
have focused on control and synchronization of uhiied
chaotic system. Chen (and Lu, 2002) considered tinat
parameter of the two unified chaotic systems isnomkn and
an adaptive controller is used to achieve synchsiitn
based on the Lyapunov stability theory. Chen (gt2004)
investigated the stabilization and synchronizatioh the
unified chaotic system via an impulsive control heat. Lu
(et. al., 2004) used linear feedback and adaptireral to
synchronize an identical unified chaotic systenhwibly one
input controller. Ucar (et. al., 2006) used a nozdir active
controller to synchronize two coupled unified cli@systems
with three control inputs. Wang (and Liu, 2007) y&o that
the unified chaotic system is equivalent to a pa&ssine
which become asymptotically stabilized at equilibni
points. Wang (and Song, 2008) studied the synchatioin
problem of two identical unified chaotic systemégsthree
different methods. They used a linear feedback controller, a
nonlinear feedback method and an impulsive cormrtraid

systems can still show chaos when their models rbeco synchronize the systems. In (Zribi et al., 200%dahon the

fractional. Ahmad (and Harba, 2003) investigatechosh
control for fractional chaotic systems, where colters have
been designed using ‘“backstepping” method of mwdr
control design. Li (and Chen, 2004), found thatashaxists
in the fractional order Chen system with order l¢sm 3.

sliding mode theory synchronization of two identigaified
chaotic is discussed.

In this paper adaptive sliding mode control will tesigned
to synchronize two fractional order unified chaatitstems.



This will be done when parameters are unknown aati rio
be identified, especially when initial conditionsroaster and
slave systems are differenthis is also done when the slave

system is perturbed bthe uncertainies in the dynamic. Also
Unlike many well-known methods of the sliding modtntrol, no
knowledge on the bound of uncertainty and distucbas required.

The paper is organized as follows: Section 2 dessrithe
unified system. Fractional-order adaptive controlles
proposed to synchronize and identify parametersvofthe
unified systems in section 3. Simulation study igeg in
section 4, to illustrate the effectiveness of th®ppsed
controller. The paper will be concluded in section

2. SYSTEM DESCRIPTION

Unified chaotic system is a system whose behaviou

incorporates the behaviour of the chaotic LorenzerCand
the Li systems. The unified chaotic system is guaerby
the following set of ordinary differential equatgn
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The states of the system (6) atey andz and the parameter
of the system isy. Parametera takes values in the range

[0,1]. Fora[0,1]the resulting system is chaotic. When
a =0.01, the unified chaotic system represents the Loren

chaotic attractor. It represents the LU chaoticaator when
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2.1 Fractional order Chen System

From Matouk (2009) the fractional order Chen system
given by:
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The fractional order Chen system as master is septed
from equation (4), where, x,, x, are the states ang,b, ¢

are the unknown constant parameters of the magitamaic.

A similar forced uncertain slave system can betemits:

a =0.8. Whenga =1, it represents the Chen chaotic attractor

(Bowong et al., 2006). Moreover, for][0,0.9, system (6)

is called the general Lorenz system. System (6pied the
general Chen system wher(1(0.8,] (Femat et al., 2000).

Now, let us introduce the fractional version of ation (2).
The standard derivatives in equation (1) are remlduy the
fractional derivatives as follows:
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whereq is the fractional order and is subjectedtog<1.

Chaotic behaviour of fractional order unified sysse(Chen,
LG and Lorenz-Like) for g=0.9,0.95,0.9 are shown in
(Matouk 2009). From fractional order unified chaaystem
in (2) a generalized type can be given as follows:
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%,(t).b(9ande,(f) are tme dependent unknown

parameters which must be identified through patarmeof
the master. Af (y,,y,,y,)(i=1,2,3 is an uncertain term,
representing the unknown part of dynamic. The uaggy is
assumed upper bounded by a positive constantas

|Af (Y, Y, Vo) SO

Note that the slave system contains three inputtrebn
signals. The control will be designed such thatrtfzester and
the slave are synchronized after starting fromedét initial
conditions. The error will be defined between ttaes of the
master and the slave systems. The error dynamic beil
written using equations (4) and (5) which is atofok:
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wheree = y - x, &=y,—- %, e=y-xare the states

error and the tilda-terms show the deviation ofapaaters
from their nominal values by:



da=a(t)-a, b=hb(d-h, &= ¢()- ¢. with integral operation is used such that the stidinotion on
% A b g E € the manifold achieves desired properties. Howexesljding

2.2 Fractional order LU System surface can be defined in the form of:
From Matouk (2009) the fractional order LU systengiven ¢ 10
by S=[(e0+ ¢+ qo) d+ B g g 4o
dix _ (7)  Since the system dynamic is of the fractional, wilar
dte =a,(%,~ %) fractional dynamic for surface is chosen. Due tmplexity
qe of the current synchronization task, an integraiatyic term
:<2 ==X X+ CX is dedicated to be included in the surface. Thislve shown
dt providing a faster synchronization. The situati®gt) =0
q
dd_tz%lexz-qxa proves a stable dynamic feft) . Our aim is to design a

controllerto enable the system reaching to the sliding sarfac
in a finite time. To ensure the occurrence of thidirgy
motion, the proposed control law and the adaptation
mechanism are given by:

The master fractional order LU system is represkifitem
equation (7) whilst the forced uncertain slave exystan be

written as:
doy ® [w="e-a()(e- 9+ kan(9 (11)
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Deduction of equations (7) from (8) yields the emgnamic

by: Wherek is the reaching gain, achieved by following adagptiv
law:
9 S =
%;_s=az(t)(ez-@)+~4 = P+ALy ¥ Y+ u O k=38 o=k 3
wherey is a positive constant number.
d‘ -
d_t?:_yles_ gxtoyet YeAf yy ¥+ | Lemma (Barbalat lemma, Khalil, 1992). &:R - Ris a
dog 5 uniformly continuous function fot = 0 and if the limit of the
Fﬂﬁ%’f%&‘@()@‘ xBAf yy ¥+ u integral
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In this paper, the goal is to design an adaptiidingl mode
controller such that the resultant error of the usib

2 : e exists and is finite, then
synchronization and the parameter identificatioprapches

zero. This means: lim a(t) =0
t 500
lim |e()]=lim | Y - X}|=0 Theorem 1. Consider the error dynamic (6) with unknown
toe oo parameters and disturbance uncertainties. Thisesyss
and controlled by an adaptive sliding mode controllerl)(
together with the adaptation mechanism (12). Tihenstate
lim |a| =lim |a2(l) - a1| =0 error trajectory converges to the sliding surfa¢g =0.
t- o0 t- o0
lim |5| =lim |by(§ - =0 Proof. Consider the following Lyapunov function as:
t- o0 t o0
C A 1 1 1 1.
lim|& =lim|c() —¢|=0 V==F+(A+ B+ +—(k K
fim [ef =1im Jex(9 - S S+ O+ (ke &

Then, the first derivative is:
3. SLIDING MODE CONTROLLER

3.1 Design of the Controller for the Fractionatler Chen
System

A primary step in designing the sliding mode coltrois to
choose a sliding surface. An appropriate switchsngface
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Substitution of equations (11) and (12) into eqrat{(14)
achieves the derivative of the Lyapunov function as

1
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From equation (13) and (15) we achieve:
V=Sx30- ) £ (16)

It is clear that the scaldc can be chosen in such a way that
the value of(g - k) remains negative: (i.e(g -k) = -7
wheren >0 ). And it is straight forward to verify that:

V<-37|9=-a()<0 17)

where a(t)=3|S|. From equations (11) and (12) is

concluded that the reaching conditioi<0 is always
maintained. Sinc&  is negative semi-definite, the origin of
the error system is not asymptotically stable. &atf as

V' <0then SO L, anda,b,é0L,, accordingly V(t)OL,
(i.e. S, 3 b g V() are bounded). Then we have:

[Laxdr<]Vda=v(0)-V (9= V()

As t goes infinite, the above integral is always lésstor
equal to V(0). Since V(0)is positive and finite,
i t

im )32

exists and is finite. Thus according to the Barbaleemma
we obtain:

lim a(t) =lim 7|8/ =0 (18)

Sincen is greater than zero, (18yplies S=0

Hence the proof is completely achievad.

3.2 Design of the Controller for the Fractionabter Lu
System

The same switching surface is used when the prapose
control law and the adaptation mechanism are dgiyen
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Similar from previous sectionkis the
achieved according of equation (13).

reaching gain,

Theorem?2. Consider the error dynamic in (9) with unknown
parameters and disturbance uncertainties. The st
trajectory converges to the sliding surfaggt) =0 if the

sliding mode control law and the adaptation mecdranin
equations (19) and (20) are applied.

Proof. Candidate the Lyapunov function as:
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The time derivative of/ is obtained by:
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Replacing equations (19), (20) and (13) into equati®1)
achieves the derivative of the Lyapunov function by

V<3o-k)|g

Again It is clear that the scald can be chosen in such a
way that the value ofo - k) remains negative.

(22)

From inequality (22), it is concluded that therésexa finite
time t, such that for ai>t,, the reach conditioV <0 is
maintained. Similar from the previous section, from
Barbalat's lemmas =0ast - « . Thus the proof is fully
achievedm

4. SIMULATION APPROACH

A simulation has been carried out using SIMULINK
where the order is set p=0.95. Adams method is used to
solve the system of differential equations durinige t
simulation. Initial conditions of states of maséed slave are

respectively  selected  as (15,10,§and(12,8,7).
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The master is also perturbed by an uncertainty tdrm
A (Y, Y,y ¥5)=0.5sing Vi + Yo+ ¥ ) (i= 1,2,3B.

In addition, the following adaptive law is useduppdatek .
-6|§ , K0)=15

Also Fig. 3. show the corresponding switching fimcin
equation (10).

k=

4.1 Robust synchronization and Parameter ideiatiida of
Chen Fractional order System

In this subsection robust synchronization and patem
identification of Chen fractional order system aoacerned.

The result also shows that the proposed controéraehis
robust to bounded uncertainty.
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