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Abstract:  This paper addresses a robust synchronization of fractional order unified systems whilst some 
parameters need to be identified. Based on the Sliding mode theory, a control law is proposed to realize a 
robust synchronization and parameter identification of two fractional order unified systems especially in 
presence of discrepancy in the initial conditions. This is also done when the slave system is perturbed by 
the uncertainties in the dynamic and parameters of the master are made unknown. A novel switching 
surface is proposed to perform the task and raise the convergence rate of the error in the closed-loop 
sliding mode control. Also Unlike many well-known methods of the sliding mode control, no knowledge 
on the bound of uncertainty and disturbance is required. Simulation approach is given to assess validation 
and quality of the analysis and design. 
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1. INTRODUCTION 

Chaotic systems have held researchers’ interest in the past 
decades. Such nonlinear systems can model various natural 
and man-made systems, and are known to have great 
sensitivity to initial conditions. This means two system 
starting trajectories from their arbitrary and almost the same 
initial states could evolve in dramatically different fashions, 
and soon become uncorrelated and unpredictable. In recent 
years, a new direction of chaos research has emerged, in 
which fractional order calculus is applied to dynamic systems 
(Wang and Yu, 2008). 

Fractional calculus is in essence as an extension of ordinary 
calculus, with almost 300-year-old history. In spite of the 
long history, the application of fractional calculus to physics 
and engineering are just a recent focus of interest (Podlubny, 
1999). It has been found that the behaviour of many physical 
systems can be properly described by using the fractional 
order system theory. For example heat conduction (Jenson 
and Jeffreys, 1997), quantum evolution of complex systems 
(Kusnezov et al., 1999), and diffusion waves (EI-Sayed, 
1996) are known systems governed by the fractional order 
equations. In fact, real world process generally or most likely 
is fractional order system (Torvik and Bagley, 1984). More 
recently, there is a new trend to investigate the control and 
dynamics of fractional order dynamical systems. 

Ahmad (and Sprott, 2003) has shown that nonlinear chaotic 
systems can still show chaos when their models become 
fractional. Ahmad (and Harba, 2003) investigated chaos 
control for fractional chaotic systems, where controllers have 
been designed using ‘‘backstepping’’ method of nonlinear 
control design. Li (and Chen, 2004), found that chaos exists 
in the fractional order Chen system with order less than 3. 

Linear feedback control of chaos in this system is studied. In 
(Li et al., 2003) chaos synchronization of fractional order 
chaotic systems are studied. 

A unified chaotic system is a chaotic system which depends 
on a parameter [0,1]α ∈ . If 0 0.8α≤ <  , the unified chaotic 

system reduces to the generalized Lorenz chaotic system; the 
unified chaotic system is reduced to the Lü chaotic system 
when 0.8α = . 0.8 1α< ≤  makes the unified chaotic system 
the generalized Chen chaotic system. Several researchers 
have focused on control and synchronization of the unified 
chaotic system. Chen (and Lu, 2002) considered that the 
parameter of the two unified chaotic systems is unknown and 
an adaptive controller is used to achieve synchronization 
based on the Lyapunov stability theory. Chen (et al., 2004) 
investigated the stabilization and synchronization of the 
unified chaotic system via an impulsive control method. Lu 
(et. al., 2004) used linear feedback and adaptive control to 
synchronize an identical unified chaotic system with only one 
input controller. Ucar (et. al., 2006) used a nonlinear active 
controller to synchronize two coupled unified chaotic systems 
with three control inputs. Wang (and Liu, 2007) proved that 
the unified chaotic system is equivalent to a passive one 
which become asymptotically stabilized at equilibrium 
points. Wang (and Song, 2008) studied the synchronization 
problem of two identical unified chaotic systems using three 
different methods. They used a linear feedback controller, a 
nonlinear feedback method and an impulsive controller to 
synchronize the systems. In (Zribi et al., 2009) based on the 
sliding mode theory synchronization of two identical unified 
chaotic is discussed. 

In this paper adaptive sliding mode control will be designed 
to synchronize two fractional order unified chaotic systems. 



 
 

     

 

This will be done when parameters are unknown and need to 
be identified, especially when initial conditions of master and 
slave systems are different. This is also done when the slave 
system is perturbed by the uncertainties in the dynamic. Also 
Unlike many well-known methods of the sliding mode control, no 
knowledge on the bound of uncertainty and disturbance is required. 

The paper is organized as follows: Section 2 describes the 
unified system. Fractional-order adaptive controller is 
proposed to synchronize and identify parameters of two the 
unified systems in section 3. Simulation study is given in 
section 4, to illustrate the effectiveness of the proposed 
controller. The paper will be concluded in section 5. 

 

2. SYSTEM DESCRIPTION 

Unified chaotic system is a system whose behaviour 
incorporates the behaviour of the chaotic Lorenz, Chen and 
the Lü systems. The unified chaotic system is governed by 
the following set of ordinary differential equations: 
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The states of the system (6) are x, y and z and the parameter 
of the system is α . Parameter α  takes values in the range 
[0,1]. For [0,1]α ∈ the resulting system is chaotic. When

0.01α = , the unified chaotic system represents the Lorenz 
chaotic attractor. It represents the Lü chaotic attractor when 

0.8α = . When 1α = , it represents the Chen chaotic attractor 
(Bowong et al., 2006). Moreover, for [0,0.8)α ∈ , system (6) 

is called the general Lorenz system. System (6) is called the 
general Chen system when (0.8,1]α ∈  (Femat et al., 2000). 

Now, let us introduce the fractional version of equation (2). 
The standard derivatives in equation (1) are replaced by the 
fractional derivatives as follows: 
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where q is the fractional order and is subjected to 0 1q< ≤ . 

Chaotic behaviour of fractional order unified systems (Chen, 
Lü and Lorenz-Like) for 0.9,0.95,0.99q=  are shown in 

(Matouk 2009). From fractional order unified chaotic system 
in (2) a generalized type can be given as follows: 
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2.1   Fractional order Chen System  

From Matouk (2009) the fractional order Chen system is 
given by: 
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The fractional order Chen system as master is represented 
from equation (4), where 1 2 3, ,x x x  are the states and 1 1 1, ,a b c  

are the unknown constant parameters of the master dynamic. 

A similar forced uncertain slave system can be written as: 
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( )2 2, ( )a t b t and ( )2c t  are time dependent unknown 

parameters which must be identified through  parameters of 
the master. 

1 2 3( , , ) ( 1,2,3)if y y y i∆ =  is an uncertain term, 

representing the unknown part of dynamic. The uncertainty is 
assumed upper bounded by a positive constant σ  as

1 2 3( , , )if y y y σ∆ ≤ .  

Note that the slave system contains three input control 
signals. The control will be designed such that the master and 
the slave are synchronized after starting from different initial 
conditions. The error will be defined between the states of the 
master and the slave systems. The error dynamic will be 
written using equations (4) and (5) which is as follows: 
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where 1 1 1e y x−≜ , 2 2 2e y x−≜ , 3 3 3e y x−≜ are the states 

error and the tilda-terms show the deviation of parameters 
from their nominal values by: 



 
 

     

 

 2 1 2 1 2 1( ) , ( ) , ( )a a t a b b t b c c t c= − = − = −ɶɶ ɶ .    

2.2   Fractional order Lü System   

From Matouk (2009) the fractional order Lü system is given 
by: 
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The master fractional order Lü system is represented from 
equation (7) whilst the forced uncertain slave system can be 
written as: 
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Deduction of equations (7) from (8) yields the error dynamic 
by: 

1
2 2 1 2 1 1 1 2 3 1

2
1 3 1 3 2 2 2 2 1 2 3 2

3
1 2 1 2 2 3 3 3 1 2 3 3

( )( ) ( ) ( , , )

( ) ( , , )

( ) ( , , )

q

q

q

q

q

q

d e
a t e e a x x f y y y u

dt

d e
y e e x c t e x c f y y y u

dt

d e
y e e x b t e x b f y y y u

dt


= − + − +∆ +


 = − − + + +∆ +



= + − − +∆ +


ɶ

ɶ

ɶ

 

   (9) 

In this paper, the goal is to design an adaptive sliding mode 
controller such that the resultant error of the robust 
synchronization and the parameter identification approaches 
zero. This means: 
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3. SLIDING MODE CONTROLLER 

3.1   Design of the Controller for the Fractional order Chen 
System  

A primary step in designing the sliding mode controller is to 
choose a sliding surface. An appropriate switching surface 

with integral operation is used such that the sliding motion on 
the manifold achieves desired properties. However, a sliding 
surface can be defined in the form of: 
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(10) 

Since the system dynamic is of the fractional, a similar 
fractional dynamic for surface is chosen. Due to complexity 
of the current synchronization task, an integral dynamic term 
is dedicated to be included in the surface. This will be shown 
providing a faster synchronization. The situation ( ) 0S t =  

proves a stable dynamic for( )e t . Our aim is to design a 

controller to enable the system reaching to the sliding surface 
in a finite time. To ensure the occurrence of the sliding 
motion, the proposed control law and the adaptation 
mechanism are given by: 
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Where k is the reaching gain, achieved by following adaptive 
law: 

ˆ3 , (0)k S k kγ= − =ɺ  (13) 

whereγ is a positive constant number. 

Lemma (Barbalat lemma, Khalil, 1992). If :ω →ℝ ℝ is a 
uniformly continuous function for 0t ≥ and if the limit of the 
integral        
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Theorem 1. Consider the error dynamic (6) with unknown 
parameters and disturbance uncertainties. This system is 
controlled by an adaptive sliding mode controller (11) 
together with the adaptation mechanism (12). Then the state 
error trajectory converges to the sliding surface( ) 0S t = . 

Proof. Consider the following Lyapunov function as: 
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Substitution of equations (11) and (12) into equation (14) 
achieves the derivative of the Lyapunov function as: 
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From equation (13) and (15) we achieve: 

ˆ3( )V SS k Sσ= ≤ −ɺɺ  (16) 

It is clear that the scalar k̂  can be chosen in such a way that 

the value of ˆ( )kσ −  remains negative: (i.e., ˆ( )kσ η− = −  
where 0η >  ). And it is straight forward to verify that: 

3 ( ) 0V S tη ω≤ − = − ≤ɺ  (17) 

where ( ) 3t Sω η= . From equations (11) and (12) is 

concluded that the reaching condition 0V ≤ɺ  is always 
maintained. Since Vɺ is negative semi-definite, the origin of 
the error system is not asymptotically stable. In fact, as 
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(i.e. , , , , ( )S a b c V tɶɶ ɶ  are bounded). Then we have: 
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Since η is greater than zero, (18) implies 0S =  

Hence the proof is completely achieved. ■       

3.2   Design of the Controller for the Fractional order Lü 
System  

The same switching surface is used when the proposed 
control law and the adaptation mechanism are given by: 
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Similar from previous section k is the reaching gain, 
achieved according of equation (13).    

Theorem2. Consider the error dynamic in (9) with unknown 
parameters and disturbance uncertainties. The state error 
trajectory converges to the sliding surface ( ) 0S t =  if the 

sliding mode control law and the adaptation mechanism in 
equations (19) and (20) are applied. 

Proof. Candidate the Lyapunov function as: 
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Replacing equations (19), (20) and (13) into equation (21) 
achieves the derivative of the Lyapunov function by: 

ˆ3( )V k Sσ≤ −ɺ        (22) 

Again It is clear that the scalar k̂  can be chosen in such a 

way that the value of ˆ( )kσ −  remains negative.  
From inequality (22), it is concluded that there exists a finite 
time 1t  such that for all 1t t≥ , the reach condition 0V ≤ɺ  is 

maintained. Similar from the previous section, from 
Barbalat’s lemma 0S = ast → ∞ . Thus the proof is fully 
achieved. ■ 

 

4. SIMULATION APPROACH 

A simulation has been carried out using SIMULINKTM, 
where the order is set to q=0.95. Adams method is used to 
solve the system of differential equations during the 
simulation. Initial conditions of states of master and slave are 

respectively selected as ( )15,10,6 and( )12,8,7 .
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Fig.1. Robust synchronization of fractional order unified chaotic systems 
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Fig.2. Parameter identification of two unified systems when the master incorporates unknown parameters 

Chen system Lü system 

Fig. 3. Time response of the corresponding switching function ( )S t  
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The master is also perturbed by an uncertainty term of: 

2 2 2
1 2 3 1 2 3( , , ) 0.5sin( ) ( 1,2,3)if y y y y y y i∆ = + + = .  

In addition, the following adaptive law is used to updatek . 

6 , (0) 15k S k= − =ɺ  

Also Fig. 3. show the corresponding switching function in 
equation (10). 

4.1  Robust synchronization and Parameter identification of 
Chen Fractional order System 

In this subsection robust synchronization and parameter 
identification of Chen fractional order system are concerned. 
Master system incorporates unknown constant parameters 
whilst the slave dynamic is perturbed by the uncertainties. To 
achieve robust synchronization and parameter identification, 
input controllers and the adaptation mechanism in equations 
(11) and (12) are respectively used. To obtain the Chen 
chaotic behavior, parameters in equation (4) is set to 
(Matouk, 2009): 

1 1 140 , 3, 28a b c= = =  

Result of synchronization and parameter identification are 
shown in figure (1) and (2) respectively. 

4.2  Robust synchronization and Parameter identification of 
Lü Fractional order System 

In this section a robust synchronization of Lü fractional order 
system is considered whilst parameters are also identified. It 
is also assumed the master uses unknown constant parameters 
and the slave is perturbed by the uncertainties. Robust 
synchronization and parameter identification will be achieved 
when input controllers and the adaptation mechanism in 
equations (19) and (20) are respectively used.    

The Lü behaves chaotic when parameters in equation (7) are 
taken as (Matouk, 2009): 

1 1 135 , 3 , 28a b c= = =  

The result of synchronization and parameter identification are 
respectively shown in figure (1) and (2). 

 

5. CONCLUSION 

In this paper, adaptive sliding mode controller was used to 
synchronize a class of master–slave unified system through 
Lyapunov method. This is achieved by nonlinear inputs 
control when the system is also perturbed by the 
uncertainties. A novel switching surface is proposed to perform the 
task and raise the convergence rate of the error in the closed-loop 
sliding mode control and no knowledge on the bound of 
uncertainty and disturbance is required. The states error 
converges to zero as time tends to infinity. The simulation 
result verifies the capability of the proposed adaptive control 
scheme during the synchronization task through a parameter 
identification scheme. The synchronization is made possible 
for two identical systems with different initial conditions. 

The result also shows that the proposed control scheme is 
robust to bounded uncertainty. 
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