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Abstract: The Gronwall inequality, which plays a very important role in classical differential
equations, is generalized to the fractional differential equations with Hadamard derivative in this
paper. According to the inequality, we investigate the dependence of the solution on both the
order and the initial conditions to the fractional differential equations with Hadamard derivative.
Furthermore, in terms of the inequality, the estimation of the bound of the Lyapunov exponents
for the Hadamard type fractional differential systems is considered.
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1. INTRODUCTION

In recent decades, although the fractional differential equa-
tions is paid more and more attentions, which just in-
volving the Riemann-Liouville fractional calculus or the
Caputo one (4) (5). The Hadamard calculus has not been
mentioned so much as other kinds of fractional derivatives,
even if it has been presented many years ago (2).

Firstly, some of the definitions of the Hadamard derivative
and integral are presented (3).

Definition 1. The Hadamard fractional integral of order
α ∈ R+ of function f(x), ∀x > 1, is defined by

HD−α
1,xf(x) =

1
Γ(α)

∫ x

1

(ln
x

t
)α−1f(t)

dt

t
, (1)

where Γ(·) is the Euler Gamma function.

Definition 2. The Hadamard derivative of order α ∈ [n −
1, n), n ∈ Z+, of function f(x) is given as follows

HDα
1,xf(x) =

1
Γ(n− α)

(x
d

dx
)n

∫ x

1

(ln
x

t
)n−α−1f(t)

dt

t
.

(2)

From the definitions above, the differences between Hadamard
fractional derivative and the Riemann-Liouville fractional
derivative are obvious, which at least include two aspects:
firstly, no matter what the definitions of integral or deriva-
tive, the kernel in the Hadamard integral has the form of
(ln x

t ) instead of the form of (x− t), which is involved both
in the Riemann-Liouville and Caputo integral; secondly,
the Hadamard derivative has the operator (x d

dx )n, whose
construction is well suited to the case of the half-axis and
? This work was partially supported by NNSF under grant
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is invariant relative to dilation (9), while the Riemann-
Liouville derivative has the operator( d

dx )n.

Secondly, some of propositions with the Hadamard calcu-
lus (derivative/integral) are formed as follows.

Proposition 1. If 0 < α < 1, the following relations hold

(i) HD−α
1,x (lnx)β−1 =

Γ(β)
Γ(β + α)

(lnx)β+α−1;

(ii) HDα
1,x(lnx)β−1 =

Γ(β)
Γ(β − α)

(lnx)β−α−1,

respectively.

Here we only prove (ii), (i) can be proved similar to (ii).

Proof. In terms of the Definition 2, one has

HDα
1,x(lnx)β−1

= (x
d

dx
) · 1

Γ(1− α)

∫ x

1

(ln
x

t
)−α(ln t)β−1 dt

t

= (x
d

dx
) · (lnx)β−α

Γ(1− α)

∫ x

1

(1− ln t

lnx
)−α(

ln t

lnx
)β−1d

ln t

lnx

= (x
d

dx
) · (lnx)β−α

Γ(1− α)

∫ 1

0

(1− z)−αz(β−1)dz

= (x
d

dx
) · (lnx)β−α

Γ(1− α)
B(1− α, β)

= (x
d

dx
) · (lnx)β−α

Γ(1− α)
Γ(1− α)Γ(β)
Γ(β − α + 1)

=
Γ(β)

Γ(β − α + 1)
· x · d((lnx)(β−α))

dx



=
Γ(β)

Γ(β − α + 1)
· x · (β − α)(lnx)(β−α−1)(

1
x

)

=
Γ(β)

Γ(β − α)
(lnx)(β−α−1).

This completes the proof.

Proposition 2. If α ≥ 0 and β = 1, for any j = [α] + 1, the
following relations hold

(i) (HDα
1,t1)(x) =

1
Γ(1− α)

(lnx)−α;

(ii) (HDα
1,t(ln t)α−j)(x) = 0,

in which [·] is the Gauss function, details can be found in
(3).

Next, we will introduce the weighted space Cγ,ln[a, b],
Cn

δ,γ [a, b] of the function f on the finite interval [a, b], if
γ ∈ C(0 ≤ Re(γ) < 1), n− 1 < α ≤ n, then
Cγ,ln[a, b] :=

{f(x) : ln(
x

a
)γf(x) ∈ C[a, b], ||f ||Cγ = ||(ln x

a
)γf(x)||C },

C0,ln[a, b] = C[a, b],
and

Cn
δ,γ [a, b] := {g(x) : (δng)(x) ∈ Cγ,ln[a, b],

||g||Cγ,ln =
n−1∑

k=0

||δkg||C + ||δng||Cγ,ln},

δ = x
d

dx
.

Theorem 1. Let α > 0, n = −[−α] and 0 ≤ γ < 1. Let
G be an open set in R and let f : (a, b] × G −→ R be a
function such that: f [x, y] ∈ Cγ,ln[a, b] for any y ∈ G, then
the following problem

HDα
a,t(x) = f [x, y(x)], (α > 0), (3)

HDα−k
a,t (a+) = bk, bk ∈ R, (k = 1, · · · , n, n = −[−α]),

(4)
satisfies the following Volterral integral equation:

y(x) =
n∑

j=1

bj

Γ(α− j + 1)
(ln

t

a
)α−j+

1
Γ(α)

∫ x

a

(ln
x

t
)α−1f [t, y(t)]

dt

t
, (x > a > 0),

(5)

i.e, y(x) ∈ Cn−α,ln[a, b] satisfies the relations 3-4 if and
only if it satisfies the Volterra integral equation 5.

In particular, if 0 < α ≤ 1, the problem 3-4 is equivalent
to the following equation:

y(x) =
b

Γ(α)
(ln

t

a
)α−1+

1
Γ(α)

∫ x

a

(ln
x

t
)α−1f [t, y(t)]

dt

t
, (x > a > 0).

(6)

Details can be found in (3).

2. THE GENERALIZED GRONWALL INEQUALITY

The Gronwall inequality, which plays a very important
part in classical differential systems, has been generalized

by Ye et al., recently, which can be used in fractional
differential equations with Riemann-Liouville derivatives
(10). The inequality plays a useful role in fractional differ-
ential equations, such as the dependence of the solution on
the order, and the initial conditions for Riemann-Liouville
fractional differential systems.

This paper would present a generalized Gronwall inequal-
ity which has a close connection to the Hadamard deriva-
tive.

Firstly, let’s present the classical Gronwall inequality
which can be found in (1).
Theorem 2. If

x(t) ≤ h(t) +
∫ t

t0

k(s)x(s)ds, t ∈ [t0, T ),

where all the functions involved are continuous on [t0, T ),
T ≤ ∞, and k(t) ≥ 0, then x(t) satisfies

x(t) ≤ h(t) +
∫ t

t0

h(s)k(s)exp[
∫ t

s

k(u)du]ds, t ∈ [t0, T ).

If, in addition, h(t) is nondecreasing, then

x(t) ≤ h(t)exp(
∫ t

t0

k(s)ds), t ∈ [t0, T ).

Secondly, the generalized Gronwall inequality with Riemann-
Liouville fractional derivatives is presented as follows (10).
Theorem 3. Suppose α > 0, a(t) is a nonnegative function
and locally integrable on 0 ≤ t < T (some T ≤ +∞) and
g(t) is a nonnegative, nondecreasing, continuous function
defined on 0 ≤ t < T , g(t) ≤ M (constant), and suppose
u(t) is nonnegative and locally integrable on 0 ≤ t < T
with

u(t) ≤ a(t) + g(t)
∫ t

0

(t− s)α−1u(s)ds,

on the interval. Then

u(t) ≤ a(t) +
∫ t

0

[
∞∑

n=1

(g(t)Γ(α))n

Γ(nα)
(t− s)nα−1a(s)]ds,

0 ≤ t < T.

This inequality has a close connection to the Riemann-
Liouville derivative. It also can be used to estimate the
bound of the Lyapunov exponents for both the Riemann-
Liouville fractional differential systems and the Caputo
ones. In the following, we will give a similar and different
inequality which has a great application to the Hadamard
derivative.
Theorem 4. Suppose α > 0, a(t) and u(t) are nonnegative
functions and locally integrable on 1 ≤ t < T (some
T ≤ +∞), and g(t) is a nonnegative, nondecreasing,
continuous function defined on 1 ≤ t < T , g(t) ≤ M
(constant). If the following inequality

u(t) ≤ a(t) + g(t)
∫ t

1

(ln
t

s
)α−1u(s)

ds

s
, 1 ≤ t < T, (7)

holds. Then

u(t) ≤ a(t) +
∫ t

1

[
∞∑

n=1

(g(t)Γ(α))n

Γ(nα)
(ln

t

s
)nα−1a(s)]

ds

s
,

1 ≤ t < T.
(8)



Proof. Let Bφ(t) = g(t)
∫ t

1
(ln t

s )nα−1φ(s)ds
s , t ≥ 1, for

locally integrable functions φ. Then
u(t) ≤ a(t) + Bu(t).

Iterating the inequality, one has

u(t) ≤
n−1∑

k=0

Bka(t) + Bnu(t).

In the following, we should prove that

Bnu(t) ≤
∫ t

1

(g(t)Γ(α))n

Γ(nα)
(ln

t

s
)nα−1u(s)

ds

s
, (9)

holds, and Bnu(t) → +∞ for each t in 1 ≤ t < T .

Obviously, the relation 9 holds as n = 1. Suppose it holds
for some n = k. If n = k + 1, then one has

Bk+1u(t) = B(Bku(t))

≤ g(t)
∫ t

1

(ln
t

s
)α−1[

∫ s

1

(g(t)Γ(α))n

Γ(nα)
(ln

s

τ
)kα−1u(τ)

dτ

τ
]
ds

s
.

Under the condition that g(t) is nondecreasing, one obtains

Bk+1u(t)

≤ (g(t))k+1

∫ t

1

(ln
t

s
)α−1[

∫ s

1

Γ(α))n

Γ(nα)
(ln

s

τ
)kα−1u(τ)

dτ

τ
]
ds

s
.

By interchanging the order of integration, one has

Bk+1u(t)

≤ (g(t))k+1

∫ t

1

[
∫ t

τ

(Γ(α))k

Γ(kα)
(ln

t

s
)α−1(ln

s

τ
)kα−1 ds

s
]u(τ)

dτ

τ

=
∫ t

1

(g(t)Γ(α))k+1

Γ((k + 1)α)
(ln

t

s
)(k+1)α−1u(s)

ds

s
,

where the integral
∫ t

τ

ln
t

s
)α−1(ln

s

τ
)kα−1 ds

s

= (ln
t

τ
)kα+α−1

∫ 1

0

(1− z)α−1zkα−1dz

= (ln
t

τ
)(k+1)α−1B(kα, α)

=
Γ(α)Γ(kα)
Γ((k + 1)α)

(ln
t

τ
)(k+1)α−1,

is obtained in terms of the condition that ln s = ln τ +
z ln t

τ .

Therefore, the relation 9 holds.

Moreover, since

Bnu(t) ≤
∫ t

1

(MΓ(α))n

Γ(nα)
(ln

t

s
)nα−1u(s)

ds

s
→ 0,

as n → +∞, for t ∈ [1, T ).

This completes the proof.

Corollary 1. Let g(t) = b in relation 7. Here b is a positive
constant. The relation 7 turns into the following form

u(t) ≤ a(t) + b

∫ t

1

(ln
t

s
)α−1u(s)

ds

s
.

According to the Theorem 4, we will obtain

u(t) ≤

a(t) +
∫ t

1

[
∞∑

n=1

(bΓ(α))n

Γ(nα)
(ln

t

s
)nα−1a(s)]

ds

s
, (1 ≤ t < T ).

Corollary 2. Under the assumption of Theorem 4, we
restrict a(t) to be a nondecreasing function on [1, T ). Then

u(t) ≤ a(t)Eα,1(g(t)Γ(α)(ln t)α),
where Eα,1 is the Mittag-Leffler function defined by

Eα,1 =
∞∑

k=0

zk

Γ(kα + 1)
.

Proof. The assumptions imply
u(t)

≤ a(t)[1 +
∫ t

1

∞∑
n=1

(g(t)Γ(α))n

Γ(nα)
(ln

t

s
)nα−1 ds

s
]

= a(t)
∞∑

n=0

(g(t)Γ(α))n

Γ(nα + 1)

= a(t)Eα(g(t)Γ(α)(ln t)α).
This completes the proof.

3. THE DEPENDENCE OF SOLUTION ON
PARAMETERS

As far as we are concerned, there have been several papers
dedicated to study the dependence of the solution on the
order and the initial condition to the fractional differential
equation with Riemann-Liouville type or Caputo type
derivatives, while quite few papers are committed to study
the same problems with Hadamard type derivatives. In
this section, we will display how the theorem which we
get makes contribution to analyzing the dependence of
the solution on the order and the initial condition to the
fractional differential equation with Hadamard fractional
derivatives.

Now we consider the following fractional system in terms
of the Hadamard fractional derivatives:

HDα
1,ty(t) = f(t, y(t)), (10)

HDα−1
1,t y(t)|t=1 = η, (11)

where 0 < α < 1, 1 ≤ t < T ≤ +∞, f : [1, T )×R → R.

The existence and uniqueness of the initial value problem
10-11 have been studied in (3), in which one also discussed
the dependence of a solution on initial conditions. Here, we
would investigate the dependence on both initial value and
order under the generalized inequality with the Hadamard
fractional derivatives.

First, let reduce the problem 10-11 to the Volterra integral
equation.

y(t) =
η

Γ(α)
(ln t)α−1 +

1
Γ(α)

∫ t

1

(ln t)α−1f(τ, y(τ))
dτ

τ
.

(12)
Obviously, the Volterra equation is equivalent to the initial
value problem 10-11.
Theorem 5. Let α > 0 and δ > 0 such that 0 < α −
δ < α ≤ 1. Also let the function f be continuous and



satisfy the Lipschitz condition with respect to the second
variable:

|f(t, y)− f(t, z)| ≤ L|y − z|
for a constant L independent of t, y, z in R. For 1 ≤ t ≤
h < T , assume that y and z are the solutions of the initial
value problems 10-11 and

HDα−δ
1,t z(t) = f(t, z(t)), (13)

HDα−δ−1
1,t z(t)|t=1 = η̄, (14)

respectively. Then, the following relation holds for 1 < t ≤
h:
|z(t)− y(t)|

≤ A(t) +
∫ t

1

[
∞∑

n=1

(
L

Γ(α)
Γ(α− δ))n (ln t

s )n(α−δ)−1

Γ(n(α− δ))
A(s)]

ds

s
,

where
A(t)

= | η̄

Γ(α− δ)
(ln t)α−δ−1 − η

Γ(α)
(ln t)α−1|

+| (ln t)α−δ

(α− δ)Γ(α)
− (ln t)α

Γ(α + 1)
| · ‖f‖

+| (ln t)α−δ

α− δ
[

1
Γ(α− δ)

− 1
Γ(α)

]| · ‖f‖,

and

‖f‖ = max
1≤t≤h

|f(t, y)|.

Proof. The solutions of the initial value problem 10-11
and 13-14 are as follows:

y(t) =
η

Γ(α)
(ln t)α−1 +

1
Γ(α)

∫ t

1

(ln t)α−1f(τ, y(τ))
dτ

τ
,

and

z(t) =
η̄

Γ(α− δ)
(ln t)α−δ−1

+
1

Γ(α− δ)

∫ t

1

(ln t)α−δ−1f(τ, z(τ))
dτ

τ
.

So we have
|z(t)− y(t)|

≤ | η̄

Γ(α− δ)
(ln t)α−δ−1

− η

Γ(α)
(ln t)α−1|

+| 1
Γ(α− δ)

∫ t

1

(ln t)α−δ−1f(τ, z(τ))
dτ

τ

− 1
Γ(α)

∫ t

1

(ln t)α−δ−1f(τ, z(τ))
dτ

τ
|

+| 1
Γ(α)

∫ t

1

(ln t)α−δ−1f(τ, z(τ))
dτ

τ

− 1
Γ(α)

∫ t

1

(ln t)α−δ−1f(τ, y(τ))
dτ

τ
|

+| 1
Γ(α)

∫ t

1

(ln t)α−δ−1f(τ, y(τ))
dτ

τ

− 1
Γ(α)

∫ t

1

(ln t)α−1f(τ, y(τ))
dτ

τ
|

≤ A(t) +
1

Γ(α)

∫ t

1

(ln t)α−δ−1L|z(τ)− y(τ)|dτ

τ
,

where

A(t) = | η̄

Γ(α− δ)
(ln t)α−δ−1 − η

Γ(α)
(ln t)α−1|

+| (ln t)α−δ

(α− δ)Γ(α)
− (ln t)α

Γ(α + 1)
| · ‖f‖

+| (ln t)α−δ

α− δ
[

1
Γ(α− δ)

− 1
Γ(α)

]| · ‖f‖.

Applying Theorem 1 to the above inequality and yields

|z(t)− y(t)|

≤ A(t) +
∫ t

1

[
∞∑

n=1

(
L

Γ(α)
Γ(α− δ))n (ln t

s )n(α−δ)−1

Γ(n(α− δ))
A(s)]

ds

s
.

This completes the proof.

It follows from Theorem 5 that for every small changes
ε ∈ [1, h] in order and initial condition cause only small
changes of the solution in the closed interval [ε, h].

Next, we will give a example to discuss the approximate
solution of the Hadamard fractional differential equation.

HD1−δ
1,t x(t) = x(t), (15)

HD−δ
1,t x(t)|t=1 = 1, (16)

where 1 ≤ t < T ≤ +∞, δ is a small positive constant.

For the question above, we don’t necessarily bother to
get its asymptotic solution. We can find its approximate
solution quickly in other way. Now we consider the simple
problem as follows.

HD1
1,ty(t) = y(t), (17)

HD0
1,ty(t)|t=1 = 1. (18)

Combining the corresponding evaluation and the Theorem
5, one has

A(t) =

| 1
Γ(1− δ)

(ln t)−δ − 1|+ | (ln t)1−δ

1− δ
− ln t| · ‖x‖

+| (ln t)1−δ

1− δ
[

1
Γ(1− δ)

− 1]| · ‖y‖.

When δ −→ 0 and t ∈ [1, T ), we get A(t) −→ 0.

Actually, δ −→ 0 and t ∈ [1, T ), one has

|x(t)− y(t)| = |eln t − (ln t)δe(ln t)1−δ | −→ 0.

Therefore, when δ is a small parameter, we can reasonably
substitute x(t) = eln t for the solution of the problem 17-
18. The example shows that the Hadamard differential
equation has the dependence on both initial conditions
and the order of derivative.



4. ESTIMATION OF THE BOUND OF THE
LYAPUNOV EXPONENTS FOR THE FRACTIONAL

DIFFERENTIAL SYSTEMS WITH HADAMARD
DERIVATIVE

Theorem 6. The following fractional differential system
with Hadamard derivative



HDα
t0,tx(t) = f(x, t),

(x, t) ∈ Ω× (t0,+∞) ⊂ Rn × (t0,+∞), α ∈ (0, 1), t0 > 0,

HDα−1
t0,t x(t)|t=t0 = x0,

(19)
has its first variation equation



HDα
t0,tΦ(t) = fx(x, t)Φ(t),

(x, t) ∈ Ω× (t0,+∞) ⊂ Rn × (t0,+∞), α ∈ (0, 1), t0 > 0,

Φ(t0) = I,
(20)

where I is a identity and

Φ(t) =
∂

∂s
φ(t;x0 + sΦ(t))|s=0 = Dxφ(t0;x0),

φ(t0;x0) is the fundamental solution to the system.

Proof. The proof is similar to the reference (5), we omit
the details here.

Definition 3. Let uk(t), k = 1, 2, · · · , n be the eigenvalues
of Φ(t) of system 20, which satisfy |u1(t)| ≤ |u2(t)| ≤ · · · ≤
|un(t)|. Then the Lyapunov exponents lk of the trajectory
x(t) solving 20 are defined by

lk = lim
t→∞

sup
1
t

ln |uk(t)|, k = 1, 2, · · · , n.

These exponents lk, k = 1, 2, · · · , n, are real numbers. The
existence of the limit for the classical differential system
was established (7). For the fractional differential system,
it still holds. Obviously, Φ is not invertible when u1(t) = 0,
which implies l1 = −∞. But this case does not happen in
general. Hence, here and hereafter, we assume that u1(t)
is not (identically) equal to zero. Therefore, Φ is always
supposed to be invertible.

Next, we will get down to estimate the bound of the
Lyapunov exponents for the fractional differential systems
with Hadamard derivative. But firstly, let’s take a look at
the following lemma.

Lemma 1. If 0 < α < 2, β is an arbitrary complex
number, u is an arbitrary real number such that πα

2 <
u < min{π, πα}, then for an arbitrary integer p ≥ 1 the
following expansion holds

Eα,β(z) =
1
α

z(1−β)/αez1/α −
p∑

k=1

z−k

Γ(β − kα)
+ O(|z|−1−p),

|z| → ∞, | arg(z)| ≤ u.

The lemma can be found in (8).

By Lemma 1, we can directly obtain the asymptotic
expansion of the Mittag-Leffler function

Eα,α(K(ln t)α) ≈ eK
1
α

α
K

1
α−1(ln t)1−αt, t → +∞,

where K is a positive constant.

Integrating system 19 gives

Φ(t) =
(ln t

t0
)α−1

Γ(α)
I +

1
Γ(α)

∫ t

t0

(ln
t

τ
)α−1fx(x, τ)Φ(τ)

dτ

τ
.

Taking the matrix norm of both sides of the above equation
leads to

‖Φ(t)‖ ≤ (ln t
t0

)α−1

Γ(α)
+

M

Γ(α)

∫ t

t0

(ln
t

τ
)α−1‖Φ(τ)‖dτ

τ
,

where we assume that the constant M ≥ ‖fx(x, t)‖.
Applying Corollary 2 to the above integral inequality
brings about

‖Φ(t)‖ ≤ (ln
t

t0
)α−1Eα,α(M(ln

t

t0
)α).

By the fact that the spectral radius of a given matrix is
not bigger than any norm of a matrix, we have

|un(t)| ≤ ‖Φ(t)‖ ≤ (ln
t

t0
)α−1Eα,α(M(ln

t

t0
)α).

By the definition of the Lyapunov exponents and applying
Lemma 1, one gets

ln = lim
t→+∞

sup
1
t

ln |un(t)| ≤ lim
t→+∞

sup
1
t

ln ‖Φ(t)‖

≤ lim
t→+∞

sup
1
t

ln((ln
t

t0
)α−1Eα,α(M(ln

t

t0
)α))

= lim
t→+∞

sup
1
t

ln(
eK

1
α

α
K

1
α−1(ln

t

t0
)1−α t

t0
)

= 0.

Theorem 7. The Lyapunov exponents of systems 19 satisfy
−∞ < l1 ≤ · · · ≤ ln ≤ 0,

where ‖fx(x, t)‖ ≤ M .

So we eventually derive the upper bound of the Lya-
punov exponents for the fractional differential systems
with Hadamard derivatives and the exact upper bound
is zero, which means that generally there are no chaotic
attractors about the fractional differential systems with
Hadamard derivative in terms of Definition 3.
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