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Abstract: Fractional order dynamic model could model various real materials more adequately
than integer order ones and provide a more adequate description of many actual dynamical
processes. In this paper, we present the use of fractional order system representation in the
Model Predictive Control (MPC) to describe the dynamics of plant used to construct the control
law. The use of the fractional model guarantees stability and performance of the closed-loop
especially with the present of noise. Simulation results are presented to show that the use of
fractional order MPC achieves better control performance compared to those of the conventional
MPC that uses integer order models.
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1. INTRODUCTION

Fractional calculus allows a more compact representation
and problem solution for many systems. The idea of frac-
tional integrals and derivatives has been known since the
development of regular calculus. Probably the first physi-
cal system to be widely recognized as one demonstrating
fractional behavior is the semi-infinite lossy (RC) trans-
mission line (see Clarke et al. (2004)). Another equivalent
system is the diffusion of heat into semi-infinite solid (see
Kulish and Lage (2000)). Other systems that are known
to display fractional order dynamics are viscoelasticity,
colored noise, electrode-electrolyte polarization, dielectric
polarization, boundary layer effects in ducts, and elec-
tromagnetic waves. Because many systems are known to
display fractional order dynamics, they can’t be controlled
the same way as those which doesn’t. Unfortunately, these
systems had been considered to be similar to systems with
integer order dynamics for a long time. However, in the
last decade we notice the born of the fractional control
that deals with those specific systems. The significance
of fractional control system is that it is a generalization
of the classical integer order control theory, which could
lead to a more adequate modeling and more robust control
performance.

Predictive control is a family of control techniques that
optimize a given criterion by using a model to predict
system evolution and compute a sequence of future control
actions. Predictive control accepts a variety of models,
objective functions, and constraints, providing flexibility
in handling a wide range of operating criteria present
in industrial processes. See Maciejowski (2002), Camacho
and Bordóns (2004) and Rossiter (2003). A variety of
processes can be controlled using MPC. Guzmán et al.

(2005)
Generally, in MPC linear models are used to predict the
system dynamics, even though the dynamics of the closed-
loop system is nonlinear or displays fractional order dy-
namics.

This paper focuses on the use of fractional order system
description to model fractional order dynamics in model
predictive control to construct a fractional order Model
Predictive Control. Where the fractional order model
could model various real materials more adequately than
integer order ones and provide a more adequate description
of many actual dynamical processes, which will improve
the MPC performances and lead to a more robust control
performance. See Valério and da Costa (2006) and Shan-
tanu (2008). The results in this paper show that the use of
fractional order models don’t only give better results than
the use of integer order models, but it performs better with
the presence of noise which, can be interpreted as a kind
of robustness.

The paper is organized as follows. In Section 1 we present
some theoretical aspects of fractional order systems and
fractional order approximation. In Section 2 . the basic
concept of MPC is introduced. An outline of the fractional
model MPC schemes is also presented and simulation
results are discussed in section 3.

2. FRACTIONAL ORDER SYSTEMS

A fractional order system is that system described by the
following fractional order differential equation



anD
αnf(x) + an−1D

αn−1f(x) + an−2D
αn−2f(x) + . . .

= bnD
βnf(x) + bn−1D

βn−1f(x) + bn−2D
βn−2f(x) + . . .

(1)

where Dαn =0 Dαn

t , is called the fractional derivative of
order αn with respect to variable t and with the starting
point t = 0.
In fractional calculus, the fractional derivative is defined
due to Riemann and Liouville fractional integral version
given by (2). (See Miller and Ross (1993) and Podlubny
(1999a)):
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where Γ(ν) is the Euler’s Gamma function defined by:
Γ(ν) = (ν − 1)! , with the property: Γ(ν + 1) = νΓ(ν).

The fractional derivation is then defined by:

Dνf(x) =
1

Γ(n− ν)

(
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where n is an integer number defined as n− 1 < ν < n

The Laplace transform of a fractional derivative can be
calculated easily by applying the regular Laplace operator
on (3):

L[Dνf(x)] = sνF (s)−
n−1
∑

k=0

sn−k−1 Dk−n+νf(0) ifRe(ν) > 0

(5)
and n is the integer number defined before. Where the
summation in the right hand side of (5) will be equals to
zero if Re(ν) ≤ 0

Approximation of the fractional order transfer function

For simulations and implementations, we need to approx-
imate the fractional order transfer functions of powers of
ν ∈ R by the usual integer order n ∈ Z transfer functions
with a similar behavior. The integer transfer function may
then have to include an infinite number of poles and zeroes.
But it is always possible to get good approximations. In
fact, there are a number of approximations that exist and
makes use of a recursive distribution of poles and zeroes.
See Oustaloup (1991) and Chareff et al. (1992) . The
most common approximation used is that proposed by
Oustaloup (1991):

sν ≈ C

N
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)
, ν > 0. (6)

ωl, ωh are the lower and higher frequency approximation
interval. This means that the approximation is valid in
that frequency interval. The gain C has the role of ap-
proximation tuning, so it is adjusted until both sides of (6)
will have unit gain at 1 rad/s. The approximation limits
N is chosen before hand, and the good performance of the
approximation strongly depends thereon. low values result
in simpler approximations, but also cause the appearance

of a ripple in both gain and phase behaviors; such a ripple
may be practically eliminated increasing N , but the ap-
proximation will be computationally heavier. Frequencies
of poles and zeroes in (6) are given by:
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ν�N (7)
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(1−ν)�N (8)
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√
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η (11)

In general, it is usual to split fractional powers of s like
this:

sν = snsδ, ν = n+ δ (12)

where n is an integer number defined as: n < ν < n + 1,
thus the values of δ will be compromise between 0 and 1.
In this manner we need only to approximate the latter
term.

3. THE MODEL PREDICTIVE CONTROL

Model Predictive Control problem is formulated as solving
on-line a finite horizon open-loop optimal control prob-
lem subject to system dynamics and constraints involving
states and controls. However, the success of the model
predictive control strategy depends critically on the choice
of the model. See Maciejowski (2002) and Camacho and
Bordóns (2004) and Guzmán et al. (2005).

3.1 The model predictive control principle

For a given plant, at instant k, the reference trajectory r(k)
is defined to be the ideal trajectory along which the plant
should return to the set-point trajectory w(k). It is fre-
quently assumed that the reference trajectory approaches
the set-point exponentially from the current output value
y(k), with the time constant of the exponential, which we
shall denote Tref , defining the speed of response [Camacho
and Bordóns (2004)].
The current error between the output and the setpoint is
then defined to be:

err(k) = w(k)− y(k) (13)

then the reference trajectory is chosen such that the error
i steps later, if the output followed it exactly, would be

err(k + i) = exp−iTs/Tref err(k) (14)

where Ts is the sampling interval. That is the reference

trajectory is defined to be:

r(k + i|k) = w(k + i)− err(k + i) (15)

The notation r(k+ i|k) indicates that the reference trajec-
tory depends on the conditions at time k, in general. See
Maciejowski (2002) and Richalet (1993).
A predictive controller has an internal model which is used
to predict the behavior of the plant, starting at the current
time k, over a future prediction horizonHp. This predicted
behavior depends on the assumed input trajectory û that



is to be applied over the prediction horizon, and the idea
is to select that input which promises the best predicted
behavior. The notation û rather than u here indicates that
at time k we only have a prediction of what the input
at time k + i may be; the actual input at that time,
u(k + i), will probably be different from û(k + i|k). Note
that we assume that we have the output measurement y(k)
available when deciding the value of the input u(k). We
should also notice that the model output y(k) depends
only on the past inputs u(k−1), u(k−2), ..., not including
the present input u(k). Maciejowski (2002).

Once a future input trajectory has been chosen, only
the first element of that trajectory is applied as the
input signal to the plant. That is, we set u(k) = û(k|k),
where u(k) denotes the actual signal applied. Then the
whole cycle of output measurement, prediction, and input
trajectory determination is repeated, one sampling interval
later. Since the prediction horizon remains of the same
length as before, but slides along by one sampling interval
at each step, this way of controlling a plant is often called
a receding horizon strategy.

3.2 Computing the optimal control signal

To compute the control signal û(k) that will be applied at
time instant k, we should solve an optimization problem
where, the receding horizon cost function that will be
minimized is defined by 16.

J =
∑

i∈P

R× [r(k + i|k)− y(k + i|k)]2+
∑

Hu

Q × [∆u(k + i− 1)]2
(16)

where P denotes the set of indices i which correspond to
coincidence points and Hu is the control horizon, R and Q
are weighting matrices. In the simplest case these matrices
are set to identity matrix.
Conceptually, the internal model can first be used to
predict the free responses ŷf (i + Hp|k) of the plant,
which are the responses that would be obtained at the
coincidence points if the future input trajectory remained
at the latest value u(k− 1). Depending on the form of the
model, these values will be obtained, and if a step or pulse
response is available as the model, then all the available
past inputs are needed.
Now let S(Hp) be the response of the model to a unit
step input, Hp steps after the unit step is applied. The
predicted output at time k +Hp is

ŷ(k +Hp|k) = ŷf (k +Hp|k) + S(Hp)∆û(k|k) (17)

where

∆û(k|k) = û(k|k)− u(k − 1) (18)

is the change from the current input u(k − 1) to the
predicted input û(k|k). We want to achieve

ŷ(k +Hp|k) = r(k +Hp|k) (19)

hence, the optimal change of input can be calculated easily
by solving the minimization of the cost function given by
(16).

4. FRACTIONAL MODEL FOR PREDICTIVE
CONTROL

Since fractional order models describes fractional systems
better than integer order models do, we propose to use a
fractional order model rather than an integer order one as
in the used conventional model predictive control.
Figure 1 shows the model predictive control scheme using

 
Plant 

Optimizer 

Cost function   Constraints 

Future inputs 

Fractional 

order model 

Predicted output 

Plant output 

+ 
- 

Future Errors 

Fig. 1. Model predictive control using fractional order
model

fractional order model. The implementation of this idea
means that (16) have to be in the following forme:

J =
∑

i∈P

[r(k + i)− yfrac(k + i|k)]2+
∑

Hu

[∆u(k + i− 1)]2
(20)

where yfrac is the fractional order system output. Due to
the approximation calculation of yfrac the determination
of the control signal u(k) or its increment ∆u(k) will
be quit difficult, and for this reason the matrices R
and Q are set to identity. Therefor, depending on the
number of poles and zeros used for the fractional system
approximation, we can adjust the control system for better
improvement. Consequently, a better fractional system
dynamic approximation will be achieved.
We will show in the next section how can we improve
the performances of the predictive control, and maintain
the system stability in the case of changing the prediction
horizon by the use of a fractional order model rather than
integer order model in the predictive control.

4.1 Simulation results

In this section we consider the following non commensu-
rate fractional order plant given by Podlubny (See Pod-
lubny (1999a)):

G(s) =
1

0.8s2.2 + 0.5s0.9 + 1
(21)

To implement the fractional system model we used the
approximation given by (6) and (7) to (11).
For the comparison purpose, we will use the integer order
model proposed by Podlubny (See Podlubny (1999b))
given by (22) , which represent the nearest integer order
model to the system defined by 21. Since the fractional



orders are approximated to those nearest integer ones This
model will be used to implement the integer order MPC:

G(s) =
1

0.8s2 + 0.5s+ 1
(22)

The performance of the results is then asserted and com-
pared to the performance obtained with integer order
model.
Figure 2 shows the step response of the fractional order
system.
Figures 3 and 4 shows the effect of the prediction horizon
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Fig. 2. Step response of the plant

on the closed loop control system using both fractional or-
der and integer order MPC respectively. In figure 3 the step
responses shows an increase in the maximum overshoot as
the prediction horizon increases. Unfortunately, this not
the case for the integer order MPC as shown in figure 4.
Since integer order MPC was completely unstable for a
prediction horizon Hp = 6 the prediction horizon started
from Hp = 8.
Hence, for the comparison reasons we used the prediction
horizon Hp = 12 with both MPC’s.

Figure 6 shows the controlled plant output to a square
input signal using both fractional order and conventional
MPC. Notice that both plant outputs reaches the correct
set-point. However, the use of the fractional order MPC
leads to better improvements of the control of the frac-
tional order system compared to the use of the integer
order MPC.
Figure 6 shows the control input signal using both frac-
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Fig. 3. The effect of the prediction horizon on the fractional
model MPC
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Fig. 4. The effect of the prediction horizon on the integer
model MPC
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Fig. 5. Controlled plant output using both fractional model
and integer order MPC
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Fig. 6. Control input signal using both fractional model
and integer order MPC

tional model and integer order MPC

5. CONCLUSION

In this paper, a fractional order MPC is proposed for
fractional order systems control. The benefits of fractional
order models for real dynamical objects and processes
become more and more obvious. Through the fractional
order and integer order dynamical models, the proposed
fractional order MPC has been presented. The simulation
results illustrate that the use of fractional order models to
control systems that present fractional dynamic behaviors,
to construct a fractional model MPC achieves better con-
trol performances compared to those of the conventional



MPC. This approach allows an efficient formulation of
MPC while guaranteeing stability and performance of the
closed-loop control system.
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D. Valério and J. Sá da Costa. Tuning of fractional
pid controllers with ziegler-nichols-type rules. Signal
Processing, 86(10):2771–2784, 2006.


