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Université de Guelma, BP 401 Guelma, 24000, Algèrie
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Abstract: This paper propose an optimal tuning method for fractional PI controller. The
method consist of minimizing Integral Time Absolute Error (ITAE) performance index criterion.
The fractional PI controller are achieved by diffusive representation and the optimum setting
of fractional controller parameters are reached by using conventional optimization algorithm.
An example of application is presented to evaluate the proposed method. A comparison with
classical PI controller shows that the system is robust to gain variations.
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1. INTRODUCTION

Recently the concept of fractional calculus are widely
introduced in many areas in science and engineering. In
control systems, this concept are successfully used to
construct fractional order controllers. As a result, the
closed loop control system performances are improved in
comparison with classical controllers.

In Podlubny (1999) proposed a generalization of the PID
controller namely fractional PID (PIλDµ) where λ and µ
are the order of integration and derivation respectively
that can be real numbers. In comparison with classical PID
these controllers have two extra parameters. Therefore
classical design method may not be applied directly to
adjust all fractional controller parameters.

Several research works have proposed new design tech-
niques and tuning rules, for fractional controllers . Some
of them are based on an extension of the classical control
theory. In Valério and da Costa (2006) a tuning method
for fractional PID controller based on Ziegler-Nichols-type
rules was proposed. Monje et al. (2004) present a fre-
quency domain approach based on the expected crossover
frequency and phase margin. A state-space tuning method
based on pole placement was also used (see Dorcak et al.
(2001)). Recent tuning method based on Quantitative
Feedback Theory (QFT) are presented in Natarj and
Tharewal (2007).

Many methods for control design are based on optimiza-
tion techniques. The common approach is to minimize a
performance index (Aström and Hägglund (1995)). An op-
timization approach was proposed in Monje et al. (2004),
for the PI fractional controller tuning. A nonlinear func-
tional minimization subject to some given nonlinear con-
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straints are solved using matlab minimization function. An
intelligent optimization method for designing fractional or-
der PID controller based on Particle Swarm Optimization
(PSO) was presented (see Cao and Cao (2006)). In Leu
et al. (2002), an optimal fractional order PID controller
based on specified gain and phase margins with a minimum
ISE criterion has been designed by using a differential
evolutionary algorithm. Tuning fractional PID controller
based on ITAE criterion by using Particle Swarm Opti-
mization has been also presented in Maiti et al. (2008). In
Tavazoei (2009) the infiniteness and finiteness of different
performance indices in class of fractional-order systems
have been presented.

In this paper we propose a tuning method for fractional PI
controller based on minimizing integral time absolute error
by means of diffusive representation. The feedback control
system is implemented in Matlab/Simulink. Simulation re-
sults show the effectiveness of the proposed design method
in comparison with classical PI controller. The paper is
organized as follows. In Section 2 gives an overview on
fractional order controllers and the diffusive representa-
tion. Section 3 presents the design method procedure. An
illustrative example are given in section 4 to demonstrate
the effectiveness of the proposed method. Finally, a con-
clusions are stated in section 5.

2. FRACTIONAL ORDER OPERATORS AND
CONTROLLERS

2.1 Fractional order operator

There are several different definitions of fractional opera-
tors (see Oldham and Spanier (1974) and Miler (1993)).
One of the most used definition of the fractional integra-
tion is the Riemann-Liouville definition



D−αf (t) =
1

Γ (α)

t∫
0

(t− τ)
α−1

f (τ)dτ (1)

while the fractional derivative definition is

Dβf (t) = Dm[D−γf (t)] (2)

where

Γ (α) =

∞∫
0

xα−1e−xdx (3)

is the Gamma function, α is the order of the integration,
m is an integer number and γ = m− β.

The Laplace transform method is a powerful tool in
the frequency domain for both the system analysis and
the controller synthesis. The Laplace transform of the
fractional integral given by Riemann-Liouville, under zero
initial conditions for order α is :

L
(
D−αf (t)

)
= s−αF (s) (4)

where F (s) is the normal Laplace transformation f(t).

2.2 Fractional PID controller (PIλDµ)

Fractional PIλDµ controller is a system described by a
fractional differential equation

Kp

(
y (t) +

1

Ti
D−λy (t) + TdD

µy (t)

)
= e(t) (5)

where D is the derivative operation, Kp is the proportion-
ally gain, Ti is the integration constant, Td is the derivative
constant, λ is the integration order and µ is the derivative
order. The Laplace transform of (5), lead to the following
transfer function

C (s) = Kp

(
1 +

1

Ti
s−λ + Tds

µ

)
(6)

Taking µ = 0 and/or Td = 0 we obtain a fractional PI. We
note that if µ = 1 and λ = 1, we obtain a classical PID
controller.

2.3 Diffusive representation of fractional operators

There are several approaches that have been used to imple-
ment fractional order integration (see Point and Trigeassou
(2002) and Oustaloup et al. (2000)). An alternative is
to use the so-called ”Diffusive approach” (see Montseny
(2004)).

The diffusive realization of the pseudo differential operator

H, with impulse response h, u → g = H
(
d/dt

)
u is defined

by the dynamic input-output system:
∂tφ (ξ, t) = −ξφ (ξ, t) + u (t)

g (t) =

∞∫
0

µ (ξ)φ (ξ, t) dξ

φ (ξ, 0) = 0, ξ ≻ 0

(7)

The system (7) is the diffusive realization of H .

The impulse response h (t)is expressed from h(t) by:

h (t) =

+∞∫
0

e−ξtµ (ξ) dξ (8)

so the diffusive symbol is also given by: µ = L−1h

The transfer function of the operator H is given by:

H (s) =

+∞∫
−∞

µ (ξ)

s+ ξ
dξ (9)

We thus have the three equivalent representations :

Diffusive rep.
L→ Convolution rep.

L→ symbol
µ h(t) H(s)

µ#ν h(t)∗r(t) H(s).R(s)

In the particular case of fractional integrators

H

(
d

dt

)
=

(
d

dt

)−α

, 0 < α < 1 (10)

The diffusive symbol is expressed as (see Laudebat et al.
(2004)):

µ (ξ) = sin(πα)
π

1
ξα , x>0 where a is the order of integration

The numerical approximation of the fractional order
system based on diffusive representation is simple and
presents a more advantages.

3. THE PROPOSED DESIGN METHOD

Let us consider the feedback control system depicted in
figure 1. Where G(s) is the controlled system transfer
function and C(s) is the controller transfer function. The
controller used is a fractional PI controller with transfer
function given by (11).

Fig. 1. Feedback control system

C (s) = Kp(1 +
1

Tisλ
) (11)

These controllers have three unknown parameters Kp, Ti,
and λ, that must be determined to achieved the desired
specifications. Using (7), the diffusive realization of the
controller with input e and output u is given by

∂tφ (ξ, t) = −ξφ (ξ, t) + e (t)

u (t) =

∞∫
0

ν (ξ)φ (ξ, t) dξ (12)

where the diffusive symbol is:

ν (ξ) = Kp

(
δ(ξ) +

1

Ti

sin (πλ)

π

1

ξλ

)
(13)



Thus the transfer function of the fractional controller PIλ

by means of diffusive representation are

C (s) =

+∞∫
−∞

ν (ξ)

s+ ξ
dξ (14)

where ν is defined by (13)

Our objectives are to adjust the three fractional PI param-
eters ( Kp, Ti, and λ) that minimizing the integral time
absolute error ITAE defined by the objective function

JITAE(Kp, Ti, λ) =

T∫
0

t|e(t)|dt (15)

where t is the time and e(t) is the error step set-point
change.

The procedures to determine the PIλ fractional controller
parameters are summarized in the following:

(1) Implement the feedback control system in Mat-
lab/Simulink including diffusive realization of the
fractional PI controller through Simulink model

(2) Calculate the ITAE error
(3) Use a function of Matlab optimization toolbox to min-

imize the objective function J . The initial controller
parameters is set to be those determined by one of
existing tuning rules.

4. AN EXEMPLE OF APPLICATION

In this section, an example of application is given to
illustrate the proposed method. Consider the forth order
system

G (s) =
k

s(s+ 1)(s+ 2)(s+ 3)
(16)

To illustrate the robustness to parameter variations, we
consider only that the gain can be changed with a variation
range of K ∈ [1, 1.8]. For the simulation the function of
matlab optimization tool box are used to minimize the
objective function JITAE .

The stability margin based Ziegler-Nichols is used for
determine the initial parameters Kp and Ti whereas the
order λ = 1. The optimized parameters of the fractional
PI controller are :Kp = 5.64 , Ti = 76.32, and λ = 1.12.

Therefore, the transfer function of the fractional controller
is:

C (s) = 5.64(1 +
1

76.32s1.12
) (17)

Figure 2 presents the step response of the controlled
system with fractional PI controller. This figure shows
clearly that the overshoot and set time are acceptable.

Figure 3 illustrates the step responses with fractional
controller for different values of K. This figure shows
that the fractional controller designed by the proposed
method permits to have a time responses with slightly iso-
overshoot for different values of gain K.

In order to prove the efficiency of the proposed method we
compare our results with those obtained using classical PI

Fig. 2. Step response of the controlled system with frac-
tional PI controller

Fig. 3. Step response of the controlled system with frac-
tional PI controller for different values of K

controller, the same procedure are applied to tune classical
PI controller Therefore the optimal transfer function of
classical PI controller

C (s) = 2.0512(1 +
1

3.0681e6s
) (18)

Figure 4 presents the step response of the controlled
system with classical PI controller. Figure 5 illustrates
the step responses with classical controller for different
values of K. This figure shows that the responses with this
controller present different overshoot. So that the system
is not robust to gain variations.

5. CONCLUSIONS

An optimal design method for fractional PI controller has
been presented. The method is based on using diffusive
representation of fractional operator. The optimal settings
have been obtained by minimizing Integral Time Absolute
error using Matlab optimization toolbox . The simula-
tion results have shown the effectiveness of the proposed



Fig. 4. Step response of the controlled system with classical
PI controller

Fig. 5. Step response of the controlled system with classical
PI controller for different values of K

method in comparison with classical PI controller. In ad-
dition the system obtain is robust to gain variations.
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