
Fractional Relaxation of Dielectric Materials: 
 Adomian Decomposition Method  

 
M. S. Çavuş*,  S. Bozdemir** 

 
*Department of Physics, Faculty of Arts and Sciences, Kastamonu University, Kastamonu, Turkey 

e-mail: mserdarcavus@kastamonu.edu.tr 
** Department of Physics, Faculty of Arts and Sciences,  Çukurova University, Adana, Turkey 

e-mail: sbozdemir@cu.edu.tr 
 

Abstract: This paper gives an analytical solution on dielectric relaxation processes. Here, Adomian 
decomposition method is used for solving fractional diffusion equation obtained from evolution of 
Ising Model, where fractional derivative is based on Riemann-Liouville definition. Then this 
solution, which is valid at low temperatures, is applied to the dielectric relaxation processes. The 
solution leads to Cole-Cole dispersion relation in frequency domain. It also reaches to KWW 
(Kolraush-William-Watts) and algebraic decay relaxation functions in some approximations. 
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1. INTRODUCTION 

Fractional Calculus, which is the field of mathematical 
analysis dealing with the investigation and 
applications of integrals and derivatives of arbitrary 
order, has attracted in recent years a considerable 
interest in many disciplines. It has been found that the 
behavior of many physical systems can be more 
properly defined by using the fractional theory. 
Flexibility of degree of freedom, which is very easily 
obtained in the fractional theory, is one of the most 
important advantages of the fractional order modeling. 
Moreover, in all these studies, analysis of fractional 
diffusion equations has been a field of increasing 
interest [Mainardi (1997), (2001) - Metzler et al. 
(1999), (2000) - Schneider et al. (1989) - Ray (2008) - 
Das (2009)] 
 

 
1.1. The fractional integral and Riemann-Liouville 

fractional derivative 
 
According to the Riemann–Liouville approach the 
fractional integral of order  𝛼𝛼 > 0 is defined as 
 
𝐽𝐽𝑎𝑎 𝑡𝑡
−𝛼𝛼𝑈𝑈(𝑡𝑡) = 1

Γ(𝛼𝛼)∫ (𝑡𝑡 − 𝜏𝜏)𝛼𝛼−1𝑈𝑈(𝜏𝜏) 𝑡𝑡
𝑎𝑎 𝑑𝑑𝜏𝜏          (1.1) 

𝐽𝐽𝑎𝑎 𝑡𝑡
0𝑈𝑈(𝑡𝑡) = 𝑈𝑈(𝑡𝑡)             (1.2) 

 
Moreover, for 𝛼𝛼,𝛽𝛽 > 0, 𝑡𝑡 > 0 and 𝜈𝜈 > −1 it has 
properties: 
 
𝐽𝐽𝑡𝑡−𝛼𝛼𝐽𝐽𝑡𝑡

−𝛽𝛽𝑈𝑈(𝑡𝑡) = 𝐽𝐽𝑡𝑡
−(𝛼𝛼+𝛽𝛽)𝑈𝑈(𝑡𝑡)          (1.3a) 

 
 or  
 

 
 
 
 𝐽𝐽𝑡𝑡
−𝛽𝛽𝐽𝐽𝑡𝑡−𝛼𝛼𝑈𝑈(𝑡𝑡) = 𝐽𝐽𝑡𝑡

−(𝛽𝛽+𝛼𝛼)𝑈𝑈(𝑡𝑡)         (1.3b) 
 
and  
𝐽𝐽𝑡𝑡−𝛼𝛼𝑡𝑡𝜈𝜈 = Γ(ν+1)

Γ(ν+1+𝛼𝛼)
𝑡𝑡𝜈𝜈+𝛼𝛼              (1.4) 

 
Also,  
 

𝐷𝐷𝑎𝑎 𝑡𝑡
𝑝𝑝𝑈𝑈(𝑡𝑡) = � 𝑑𝑑

𝑑𝑑𝑡𝑡
�
𝑚𝑚+1

∫ (𝑡𝑡 − 𝜏𝜏)𝑚𝑚−𝑝𝑝𝑈𝑈(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
𝑎𝑎            (1.5) 

 
The expression (1.5) it is the most widely known 
definition of the fractional derivative and is usually 
called the Riemann-Liouville fractional definition. 
Maybe, the most important property of the Riemann-
Liouville fractional approach is that 
 
 𝐷𝐷𝑎𝑎 𝑡𝑡

𝛼𝛼  � 𝐽𝐽𝑎𝑎 𝑡𝑡
−𝛼𝛼𝑈𝑈(𝑡𝑡)� = 𝑈𝑈(𝑡𝑡)           (1.6)        

 
The Riemann-Liouville fractional differentiation 
operator is a left inverse to Riemann-Liouville 
fractional integration operator of the same order 𝛼𝛼. 
More details and properties of the operator 𝐽𝐽𝛼𝛼  and 𝐷𝐷𝑝𝑝  
can be found in [Miller et al. (1993)-Oldham et al. 
(1974)-Podlubny (1999),] 
  
1.2. Adomian Decomposition Method 
 
Adomian decomposition method introduced by 
Adomian in 1980, has proved to be a very useful tool 
on solution of nonlinear functional equations. The 
decomposition method consists in finding the solution 
in the form  
       
𝑈𝑈(𝑥𝑥, 𝑡𝑡) = ∑ 𝑈𝑈𝑛𝑛(𝑥𝑥, 𝑡𝑡)∞

𝑛𝑛=0              (1.8) 



where the components 𝑈𝑈𝑛𝑛(𝑥𝑥, 𝑡𝑡) will be determined 
recursively. More information about ADM can be 
found in [Adomian (1994)]. 
 
  

2. DIELECTRIC RELAXATION PROCESSES 
 

Relaxation properties are generally expressed in terms 
of time-domain response function 𝑓𝑓(𝑡𝑡) or of the 
frequency-dependent real and imaginary components 
of its Fourier transform [Uchaikin (2003)]:  
 
 𝑓𝑓(𝑖𝑖𝑖𝑖) = ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡∞

0 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡 
              = 𝜑𝜑′(𝑖𝑖) − 𝑖𝑖𝜑𝜑′′(𝑖𝑖).                                  (2.1) 
 
Classically, relaxation processes are described in 
terms of the exponential function; 
 
𝜙𝜙(𝑡𝑡) = exp(−𝑡𝑡/𝜏𝜏) , 𝑡𝑡 ≥ 0                     (2.2) 
 
which is generally referred to as Maxwell–Debye 
relaxation. However, in many systems the dynamical 
behavior shows conspicuous deviations from the ideal 
exponential pattern. Experimental results in the time 
domain are often described in terms of the 
Kohlrausch-Williams-Watts (KWW) or stretched 
exponential function [Metzler et al. (2002)] 

 
𝜙𝜙(𝑡𝑡) = 𝑒𝑒−(𝑡𝑡/𝜏𝜏)𝛽𝛽   , 0 < 𝛽𝛽 < 1              (2.4) 
 
or through asymptotic power-laws 

𝜙𝜙(𝑡𝑡) = 1
1+(𝑡𝑡/𝜏𝜏)𝛿𝛿

            ,   𝛿𝛿 > 0           (2.5) 

Usually three general relaxation laws are encountered 
in the experimental studies of complex systems: 
 
(i) stretched exponential  (KWW function) [William 

et al. (1971)]  
     𝑓𝑓(𝑡𝑡) ≈ exp �− �𝑡𝑡

𝜏𝜏
�
𝛼𝛼
� ,   0 < 𝛼𝛼 < 1 ,   𝑡𝑡 > 𝜏𝜏      (2.6) 

(ii)  exponential–logarithmic function  

    𝑓𝑓(𝑡𝑡) ≈ exp[−𝐵𝐵𝑙𝑙𝑛𝑛𝛼𝛼(𝑡𝑡/𝜏𝜏)]                        (2.7) 

(iii)  algebraic decay      

    𝑓𝑓(𝑡𝑡) ≈ (𝑡𝑡/𝜏𝜏)−𝛼𝛼                 (2.8) 

where τα ,  and B are the appropriate fitting 
parameters [Schneider et al. (1989)].  
 
By definition, 𝜒𝜒(𝑖𝑖) is connected to the temporal 
relaxation function through the relation  
 
 𝜒𝜒(𝑖𝑖) = ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡∞

0 𝑑𝑑�−𝜙𝜙(𝑡𝑡)�  
     = 1 − 𝑖𝑖𝑖𝑖 ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡∞

0 Φ(𝑡𝑡)𝑑𝑑𝑡𝑡                         (2.9) 
 

where Φ(𝑡𝑡) = 𝜙𝜙(𝑡𝑡)/𝜙𝜙(0). Significant amount of 
experimental data on disordered systems supports the 
following empirical expressions for dielectric loss 
spectra, namely, the Cole-Cole equation [Cole and 
Cole, (1941)]   
 
 𝜒𝜒(𝑖𝑖) = 𝜒𝜒0

1+(𝑖𝑖𝑖𝑖𝜏𝜏 )𝛼𝛼
  ,   0 < 𝛼𝛼 ≤ 1                        (2.10) 

 
the Cole-Davidson equation [Davidson et al. (1951)]   
 
 𝜒𝜒(𝑖𝑖) = 𝜒𝜒0

(1+𝑖𝑖𝑖𝑖𝜏𝜏 )𝛽𝛽
  ,   0 < 𝛽𝛽 ≤ 1              (2.11) 

 
and the Havriliak–Negami equation [Havriliak et al.  
(1966)] considered as a general expression for the 
universal relaxation law [Jonscher (1983)] 
 
 𝜒𝜒(𝑖𝑖) = 𝜒𝜒0

(1+(𝑖𝑖𝑖𝑖𝜏𝜏 )𝛼𝛼 )𝛽𝛽
  ,   0 < 𝛼𝛼 ≤ 1 ,    

                                      0 < 𝛽𝛽 ≤ 1                (2.12) 
 
Havriliak–Negami equation is a combination of the 
Cole–Cole and Cole–Davidson equations.  
 
 

3. THE ISING MODEL AND FRACTIONAL 
RELAXATION  

 
The decay of the spin-spin time correlation 

functions in a one-dimensional Ising model [XX] with 
Glauber [Glauber (1963)] dynamics was studied by 
Brey and Parados [Brey at al. (1996)]. They started 
that the energy of the system in the one-dimensional 
Ising model for a configuration σ  is 

 

∑ +−=
i

iiJH 1)( σσσ                             (3.1) 

with J  a positive constant. The state of the system is 
specified by the spin vector { }iσσ =  , where 

1±=iσ   is the spin at site 𝑖𝑖. The evolution of the 
system is described by Markov process with Glauber 
dynamics. So, the conditional probability 

),/,(1/1 ttP ′′σσ of finding the system in the state 

σ  at time t, given it was in the state  σ ′  at time t ′  
obeys the master equation 
 
𝜕𝜕𝑃𝑃1/1�𝜎𝜎 ,𝑡𝑡/𝜎𝜎 ′,𝑡𝑡 ′�

𝜕𝜕𝑡𝑡
= ∑ �𝑖𝑖𝑖𝑖(𝑅𝑅𝑖𝑖𝜎𝜎)𝑃𝑃1/1(𝑅𝑅𝑖𝑖𝜎𝜎, 𝑡𝑡/𝜎𝜎 ′, 𝑡𝑡 ′) −∞

𝑖𝑖=−∞

𝑖𝑖𝑖𝑖(𝜎𝜎)𝑃𝑃1/1(𝜎𝜎, 𝑡𝑡/𝜎𝜎 ′, 𝑡𝑡 ′)�                 (3.2) 
                    
where  σiR  is the configuration obtained from σ  by 

flipping the 𝑖𝑖.th spin and )(σωi  is the transition rate 
for the flip. Following, in the low temperature limit, 
spin-spin time correlation function was found by Brey 
and Parados in form of a diffusion type equation 
 



𝜕𝜕𝑓𝑓 (𝑥𝑥 ,𝑡𝑡)
𝜕𝜕𝑡𝑡

= (𝛼𝛼𝛼𝛼 − 𝛼𝛼)𝑓𝑓(𝑥𝑥, 𝑡𝑡) + 𝛼𝛼𝛼𝛼
2
𝜕𝜕2𝑓𝑓(𝑥𝑥 ,𝑡𝑡)
𝜕𝜕𝑥𝑥2 .          (3.3) 

 
If equation (3.3) is evaluated to fractional differential 
equation form, the one can be expressed as 
 
  𝐷𝐷𝑡𝑡

𝜉𝜉𝑓𝑓(𝑥𝑥, 𝑡𝑡) = (𝛼𝛼𝛼𝛼 − 𝛼𝛼)𝑓𝑓(𝑥𝑥, 𝑡𝑡) + 𝛼𝛼𝛼𝛼
2
𝜕𝜕2𝑓𝑓(𝑥𝑥 ,𝑡𝑡)
𝜕𝜕𝑥𝑥2 .         (3.4) 

Where 𝐷𝐷𝑡𝑡
𝜉𝜉  is the Riemann-Liouville fractional 

differentiation operator, and the initial condition for 
this equation is  
 
𝑓𝑓(𝑥𝑥, 0) = 𝑒𝑒−|𝑥𝑥|.             (3.5) 
  
We adopt Adomian decomposition method for solving 
Eq. (3.4). According to this method we assume that  
 
𝑓𝑓(𝑥𝑥, 𝑡𝑡) = ∑ 𝑓𝑓𝑛𝑛(𝑥𝑥, 𝑡𝑡)∞

𝑛𝑛=0                           (3.6) 
 
Now, the fractional differential equation (3.4) can be 
written as, for 𝜈𝜈 + 𝜉𝜉 = 1,  
 
𝐷𝐷𝑡𝑡𝜈𝜈 �𝐷𝐷𝑡𝑡

𝜉𝜉𝑓𝑓(𝑥𝑥, 𝑡𝑡)� = (𝛼𝛼𝛼𝛼 − 𝛼𝛼)𝐷𝐷𝑡𝑡𝜈𝜈𝑓𝑓(𝑥𝑥, 𝑡𝑡)    

                              + 𝛼𝛼𝛼𝛼
2
𝐷𝐷𝑡𝑡𝜈𝜈

𝜕𝜕2𝑓𝑓(𝑥𝑥 ,𝑡𝑡) 
𝜕𝜕𝑥𝑥2            (3.7) 

 
If we operate both sides of this relation with integral 
operator ℧𝑡𝑡−1, we reach to  
 
℧𝑡𝑡−1𝐷𝐷𝑡𝑡𝜈𝜈 �𝐷𝐷𝑡𝑡

𝜉𝜉𝑓𝑓(𝑥𝑥, 𝑡𝑡)� = (𝛼𝛼𝛼𝛼 − 𝛼𝛼)℧𝑡𝑡−1�𝐷𝐷𝑡𝑡𝜈𝜈𝑓𝑓(𝑥𝑥, 𝑡𝑡)� 

         + 𝛼𝛼𝛼𝛼
2
℧𝑡𝑡−1 �𝐷𝐷𝑡𝑡𝜈𝜈

𝜕𝜕2𝑓𝑓(𝑥𝑥 ,𝑡𝑡) 
𝜕𝜕𝑥𝑥2 �      (3.8.a) 

 

𝑓𝑓(𝑥𝑥, 𝑡𝑡) = (𝛼𝛼𝛼𝛼 − 𝛼𝛼)℧𝑡𝑡−1�𝐷𝐷𝑡𝑡𝜈𝜈𝑓𝑓(𝑥𝑥, 𝑡𝑡)�   

  + 𝛼𝛼𝛼𝛼
2
℧𝑡𝑡−1 �𝐷𝐷𝑡𝑡𝜈𝜈

𝜕𝜕2𝑓𝑓(𝑥𝑥 ,𝑡𝑡) 
𝜕𝜕𝑥𝑥2 �                       (3.8.b) 

 
Moreover, where recursive relations is  

𝑓𝑓(0) = 𝑓𝑓(𝑥𝑥, 0) = 𝑒𝑒−𝑥𝑥         
𝑓𝑓(1) = (𝛼𝛼𝛼𝛼 − 𝛼𝛼)𝐷𝐷𝑡𝑡

−𝜉𝜉𝑓𝑓(0) + 𝛼𝛼𝛼𝛼
2
𝐷𝐷𝑡𝑡
−𝜉𝜉 𝜕𝜕2𝑓𝑓(0) 

𝜕𝜕𝑥𝑥2       

         = �𝛼𝛼𝛼𝛼 − 𝛼𝛼 + 𝛼𝛼𝛼𝛼
2
� 𝑒𝑒

−|𝑥𝑥 |𝑡𝑡𝜉𝜉

Γ(𝜉𝜉+1)
       

𝑓𝑓(2) = (𝛼𝛼𝛼𝛼 − 𝛼𝛼)𝐷𝐷𝑡𝑡
−𝜉𝜉𝑓𝑓(1) + 𝛼𝛼𝛼𝛼

2
𝐷𝐷𝑡𝑡
−𝜉𝜉 𝜕𝜕2𝑓𝑓(1) 

𝜕𝜕𝑥𝑥2   

         = �𝛼𝛼𝛼𝛼 − 𝛼𝛼 + 𝛼𝛼𝛼𝛼
2
�

2 𝑒𝑒−|𝑥𝑥 |𝑡𝑡2𝜉𝜉

Γ(2𝜉𝜉+1)
 

𝑓𝑓(3) = (𝛼𝛼𝛼𝛼 − 𝛼𝛼)𝐷𝐷𝑡𝑡
−𝜉𝜉𝑓𝑓(2) + 𝛼𝛼𝛼𝛼

2
𝐷𝐷𝑡𝑡
−𝜉𝜉 𝜕𝜕2𝑓𝑓(2) 

𝜕𝜕𝑥𝑥2   

         = �𝛼𝛼𝛼𝛼 − 𝛼𝛼 + 𝛼𝛼𝛼𝛼
2
�

3 𝑒𝑒−|𝑥𝑥 |𝑡𝑡3𝜉𝜉

Γ(3𝜉𝜉+1)
 

 
and so on. Therefore the solution is  
 

𝑓𝑓(𝑥𝑥, 𝑡𝑡) = ∑ �𝛼𝛼𝛼𝛼 − 𝛼𝛼 + 𝛼𝛼𝛼𝛼
2
�
𝑛𝑛 𝑒𝑒−|𝑥𝑥 |𝑡𝑡𝑛𝑛𝜉𝜉

Γ(𝑛𝑛𝜉𝜉+1)
∞
𝑛𝑛=0    

       = 𝑒𝑒−|𝑥𝑥|𝐸𝐸𝜉𝜉 �𝛼𝛼 �−1 + 3𝛼𝛼
2
� 𝑡𝑡𝜉𝜉�,   0 < 𝜉𝜉 < 1      (3.9) 

Where 𝐸𝐸𝜉𝜉{. } is the Mittag–Leffler function given by  

𝐸𝐸𝜈𝜈(𝑧𝑧) = ∑ 𝑧𝑧𝑛𝑛

Γ(𝜈𝜈𝑛𝑛+1)
∞
𝑛𝑛=0                        (3.10)                 

If we assume that situation of dipoles located between 
𝑥𝑥 and 𝑥𝑥 + 𝑥𝑥0 have a probability density given by  

𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥0
𝑒𝑒(−𝑥𝑥/𝑥𝑥0) ,                      (3.11)                  

Thus, integrating the dipole correlation function (3.9) 
over the all space we can reach to the time dependent 
correlation function  

𝑓𝑓(𝑡𝑡) = ∫ 1
𝑥𝑥0
𝑒𝑒(−𝑥𝑥/𝑥𝑥0)∞

0 𝑒𝑒−|𝑥𝑥|𝐸𝐸𝜉𝜉 �𝛼𝛼 �−1 + 3𝛼𝛼
2
� 𝑡𝑡𝜉𝜉�  𝑑𝑑𝑥𝑥      

         =
𝐸𝐸𝜉𝜉�𝛼𝛼�−1+3𝛼𝛼

2 �𝑡𝑡
𝜉𝜉�

1+𝑥𝑥0
                (3.12) 

                
where 𝑥𝑥0 is the average value of  𝑥𝑥 and 1/2𝑥𝑥0 is 
average number of dipoles per unit length.  

If equation (3.12) substituted into equation (2.9),  

𝜒𝜒(𝑖𝑖) = 1 − 𝑖𝑖𝑖𝑖 ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡∞
0

𝐸𝐸𝜉𝜉�𝛼𝛼�−1+3𝛼𝛼
2 �𝑡𝑡

𝜉𝜉�

1+𝑥𝑥0
𝑑𝑑𝑡𝑡,          (3.13) 

at frequency zone, empiric Cole-Cole type equation is 
obtained simply as:  

𝜒𝜒(𝑖𝑖) = 𝜒𝜒0
1+(𝑖𝑖𝑖𝑖𝜏𝜏 )𝜉𝜉

  ,   0 < 𝜉𝜉 < 1         (3.14) 

Where we take  𝜏𝜏 = �𝛼𝛼(−1 + 3𝛼𝛼/2)�−𝜉𝜉  , 𝜒𝜒0 = 1 +
𝜆𝜆(𝑖𝑖𝑖𝑖𝜏𝜏)𝜉𝜉  and 𝜆𝜆 = 1 − 1/(1 + 𝑥𝑥0). 

Moreover, for sufficiently small times Mittag-Leffler 
function exhibits the same behavior with a stretched 
exponential [Mainardi at al. (2000)] :  
 

 𝑓𝑓(𝑡𝑡) ≈ 1 − (𝑡𝑡/𝜏𝜏)𝜉𝜉

Γ(𝜉𝜉+1)
+ ⋯    

         ≈ 𝑒𝑒𝑥𝑥𝑝𝑝 �− (𝑡𝑡/𝜏𝜏)𝜉𝜉

Γ(𝜉𝜉+1)
� ,    0 ≤ 𝑡𝑡 ≪ 1             (3.15) 

 
which is KWW (Kolraush-William-Watts) function. 
Also, using the asymptotic expansions it can be 
written  
 
 𝑓𝑓(𝑡𝑡) ≈ Γ(𝜉𝜉)𝑠𝑠𝑖𝑖𝑛𝑛 (𝜉𝜉𝜉𝜉 )

𝜉𝜉
(𝑡𝑡/𝜏𝜏)−𝜉𝜉  ,     𝑡𝑡 → ∞        (3.16)

   
 

which has same form with empirical algebraic decay 
function (2.8). When the equation (3.3) is solved by 
generation function method at appropriate boundary 
condition, which was done by [Brey at al. (1996)],   

 𝜒𝜒(𝑖𝑖) = 𝛼𝛼 1−𝜂𝜂2

1+𝜂𝜂2
1

[(𝑖𝑖𝑖𝑖+𝛼𝛼)2−𝛼𝛼2𝛼𝛼2]1/2         (3.17) 

is obtained. This expression, at low temperature, 
converts to Cole-Davidson distribution:  



CD
CDi βωτ

ωχ
)1(

1)(
+

=          (3.18) 

where CDτ  is constant and 𝛽𝛽𝐶𝐶𝐷𝐷 = 1/2  [Brey at al. 
(1996)].   

 

4. CONCLUSION 
 
In this study it is shown that fractional solution of the 
diffusion equation obtained from Ising model, where 
we used the Adomian decomposition method that has 
prove successful in deriving analytical solutions of 
linear and nonlinear differential equations, is more 
comprehensive than many other approaches. A 
flexible α parameter, which is especially used in the 
forming of the differential equations within fractional 
order modeling, exhibits that the space of physical 
processes has a fractional form, and irregularity (or 
chaos) in the nature compels us to use the fractional 
theory.  
 
We have seen that the order of the differential 
equations which is compatible with the most 
experiment is generally smaller than the integer order 
differential equations. Likely, in medium the nearest 
neigbour interaction between particles has not the 
same times and velocities because of the time (or 
energy) is fractionally changing. The local spaces of 
charged particles which have different time and 
energy intervals should be resulted to have different 
order differential equations. Moreover, maybe, we say 
that in the atomic levels (or electronic, or molecular) 
the flow of the time is quantized. Interaction between 
particles may be also quantized in time space. That is, 
quantization of the energy may be result of the time 
quantization.A result of these processes, the order of 
differential equations should be changed during the 
interaction time.  
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