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Abstract: We discuss the front propagation in the A+B → 2A reaction under subdiffusion
as described by continuous time random walks with the waiting time probability density
ψ(t) ∝ t−1−α, 0 < α < 1 and present strong arguments in favor of the following propagation
picture. At short times the front propagates at a velocity decaying as v ∝ t(α−1)/2. This regime
can be described within a framework of continuous reaction-subdiffusion equations. At longer
time the continuous scheme breaks down, and the propagation velocity shows a faster decay
v ∝ tα−1.
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1. INTRODUCTION

The theory of reactions controlled by subdiffusion at-
tracted much interest in the recent few years both because
of practical needs (reactions in porous media and geo-
logical formations, and in crowded cellular environments)
and because of very unusual mathematical structure of
the corresponding equations. In what follows we concen-
trate on the A+B → 2A autocatalytic reaction leading
to a propagation of the pulled front into the unstable B-
domain, Ref.(1). Under normal diffusion, the reaction is
described by the Fischer-Kolmogorov-Petovskii-Piskunov
(FKPP) equation which is mathematically well under-
stood. In the case when all particles where initially B and
were distributed in space with the constant concentration
B0 (which will be put to unity in what follows), the
equation for the concentration B of B reads

∂B

∂t
= D∆B − k(B0 −B)B. (1)

Here D is the diffusion coefficient of the particles (assumed
equal for A and B ones), and k is the reaction rate. The
two initial reaction-diffusion equations for A and for B
particles are reduced to Eq.(1) by using the conservation
law A + B = B0 following from the stoichiometry. The
initial condition corresponds to a droplet of A particles
introduced at the origin. We concentrate on the reaction
front propagating to the right.

Assuming the front to propagate with a constant velocity
along the x-direction one changes to a comoving frame
thus obtaining an ordinary differential equation for the
stable front form. This equation can be linearized close to
the leading edge of the front, and the spectrum of possible
velocities is obtained by requesting the concentration to be
non-negative everywhere. This condition defines then the
minimal possible propagation velocity. The fact that this
minimal propagation velocity is the one really attained un-
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der a sharp initial condition (marginal stability principle)
follows from the stability analysis of perturbations.

The minimal propagation velocity in FKPP front is v =
2
√
DkB0, and the characteristic width of the propagating

front is w ≃
√

D/kB0. In what follows we confine ourselves
to a one-dimensional situation, where the concentrations
A, B and B0 have the dimension of the inverse length
L−1, and the reaction rate coefficient k has a dimension of
[k] = LT−1.

The case of subdiffusion is much more complicated. First,
different types of subdiffusive behaviors are possible, cor-
responding either to disordered systems (percolation, ener-
getic disorder, etc.) or to systems with slow modes (poly-
mers). Second, even if the model of the subdiffusion is
fixed, for example, to be continuous time random walk
(CTRW) with the power law probability density function
(PDF) of waiting times

ψ(t) ≃ τα

t1+α
(2)

for t > τ , different reaction-subdiffusion equations emerge
when considering situations when the “internal clock” of
the particle is reset after the reaction or not, Ref.(3). In
what follows we consider the situation when the diffusion
on the large scales is hindered, but the small-scale reac-
tions follow the mass action law. The reaction does not
reset waiting times, since the last one describe only the
large-scale behavior of the system. The simplest case of
this situation (the isomerization reaction A → B) was dis-
cussed in Ref.(2) and leads to equations where the reaction
term is not simply added to a subdiffusion equation like
it is the case in Eq.(1) but enters as well the transport
operator. The corresponding equation for the A+B →
2A reaction was derived in Ref.(4), where the analysis of
the corresponding reaction-subdiffusion equation showed
that the minimal propagation velocity is zero, which fact
was interpreted as propagation arrest. The situation was
clarified in numerical simulations of Ref.(5), where two
propagation regimes were identified, both corresponding



to propagation with the velocity which decays with time.
Thus, for small reaction rates and low concentrations the
front velocity behaved as v(t) ∝ t(α−1)/2, where α is
the subdiffusion exponent (governing the mean squared
displacement of a particle 〈x2(t)〉 ∝ tα in the reaction-free
case), while for larger concentrations and high reaction
rates (a fluctuation-dominated regime which can not be
described within continuous reaction-diffusion or reaction
subdiffusion equations) the propagation velocity behaves
as v ∝ tα−1.

The longer numerical simulations of Ref.(3) identified the
second, but not the first propagation regime, claiming that
the first one “is not robust”. In what follows we discuss
this situation in some detail and present new results on
the front propagation in such a system. We show that
the continuous description of the reaction-subdiffusion
reaction gives hints in favor of propagation of a front
with velocity v(t) ∝ t(α−1)/2. The intermediate asymptotic
behavior v(t) ∝ t(α−1)/2 holds as long as continuous
description of the reaction is possible. The front width

however decays with time as w ∝ t
α−1

2 , and gets of the
order of one of the microscopic scales of the problem, so
that the continuous description inevitably breaks down
at longer time. Then another, final asymptotic behavior
(v ∝ tα−1 for a one-dimensional case) sets in. The present
contribution reports on a work in progress, however we are
highly confident that the overall physical understanding is
reached, although a large amount of computations still has
to be performed.

2. MODEL AND EQUATIONS

Let us consider the medium as consisting of compartments
of size a. The transport of particles between these compart-
ments is governed by CTRW: the waiting time of a particle
in a compartment is given by the PDF, Eq.(2). Within a
compartment i the particles react according to classical
kinetic law, i.e. the transformation from B to A follows at
the rate kAiBi where Ai and Bi are the numbers of the
particles within the compartment, and k is the properly
renormalized reaction rate constant.

Following the same procedure as in Refs. (2; 4) we start
from the balance equation for B-particles

Ḃi(t) =
1

2
j−i−1(t) +

1

2
j−i+1(t) − j−i (t) − κAi(t)Bi(t)

where j−i (t) is the loss flux from the compartment i given
by

j−i (t) = ψ(t)Ps(t, 0)Bi(0)

+

t
∫

0

ψ(t− t′)Ps(t, t
′)

[

Ḃi(t
′) + j−i (t′) + κAi(t

′)Bi(t
′)

]

dt′

and

Ps(t, t
′) = exp



−κ
t

∫

t′

Ai(t
′′)dt′′





is the survival probability of a B-particle. Since the equa-
tion for the loss flux only involves the concentrations at one

site, it can be easily solved by means of Laplace transform,
and the solution can be inserted into the first equation for
the concentration. The equation for A follows in a similar
way. Afterwards the transition to the continuous limit in
space is performed leading to the following equation for B

∂

∂t
B(x, t) = −k[1 −B(x, t)]B(x, t) +

a2

2
∆

t
∫

0

M(t− t′)

×B(x, t′) exp



−
t

∫

t′

k[1 −B(x, t′′)]dt′′



 dt′, (3)

where we used the conservation law A(x, t) = 1 −B(x, t),
and with M(t) given by the inverse Laplace transform of
M(u) = uψ(u)/[1 − ψ(u)]. The equation for A following
from the one for B by using the conservation law. For the
Markovian process with ψ(t) = τ−1 exp(−t/τ) one obtains
M(t) to be a δ-function, M(t) = τ−1δ(t) and the equa-
tions for the concentrations reduce to partial differential
equations, the FKPP case. For subdiffusion with waiting
time density following Eq.(2), the integral operator with
the M(t)-kernel is proportional to the Riemann-Liouville
fractional derivative of order 1−α. Thus, in a subdiffusive
case the equations for A and B are nonlinear fractional
partial differential equations of quite a complex structure.

3. ABSENCE OF THE CONSTANT FRONT
VELOCITY

Let us give a short sketch of the calculations done in
(4) and leading to the conclusions that no front propa-
gation at a constant velocity is possible. Assuming that
A(x, t) is small at the very far edge of the front and
linearizing the reaction-subdiffusion equation for A(x, t),
one can look for an exponential solution of the form
A = A0 exp [−λ(x− vt)]. This solution has to satisfy the
equation

λv
(

A0 exp [−λ(x− vt)]
)

= −kA0 exp [−λ(x− vt)]

+
a2

2
A0

[

−λ2 +
kλ

v

]

t
∫

0

M(t− t′) exp [−λ(x− vt′)] dt′

−a
2

2

kλ

v
A0 exp [−λ(x− vt)]

t
∫

0

M(t− t′) dt′. (4)

For the Markovian case, the standard expression for the
minimal velocity of the stable propagation is reproduced:
Taking M(t) = τ−1δ(t), introducing a new variable z =
x− vt, and concentrating on the leading edge of the front
(z → ∞), we find the dispersion relation:

a2

2τ
λ2 − vλ+ k = 0. (5)

The quadratic equation (5) has two complex conjugated
roots. Since the roots λ corresponding to the propagating
front need to stay real (to prevent concentration from
taking negative values which are inevitable if the solutions
oscillate), the condition v ≥ vmin = 2

√

a2k/2τ ≡ 2
√
Dk

follows for the propagation velocity, with D = a2/2τ
being the diffusion coefficient. In this case the two roots



v = ±v(λ) correspond to the two possible directions of the
front propagation.

For waiting time PDFs decaying as a power law, ψ(t) ∝
t−1−α, 0 < α < 1 for large t, we find with t̂ = t − t′ that
∫ t

0
M(t− t′) exp [λvt′] dt′ = exp [λvt] M̃(λv) and

R(t) =

t
∫

0

M(t− t′) dt′ =
const

τα
tα−1, (6)

so that the last term in (4) vanishes for large t. Note
that the integral R(t), Eq.(6) gives the rate of jumps of
a particle performing CTRW. Finally, with z = x− vt we
get

−λvA0 exp [−λz] = −kA0 exp [−λz]

+
a2

2
A0 exp [−λz]

[

(−λ2 +
kλ

v
)M̃(λv)

]

,

from which the dispersion relation

0 = −λv + k +
a2

2
(λ2 − kλ

v
)M̃(λv)

follows. Taking M̃(u) = τ−αu1−α this last one can be put
into the form

(vλ− k)
( a2

2τα
λ2−αv−α − 1

)

= 0

and possesses two nonnegative roots for any v ≥ 0, at
variance with the Markovian case, where such roots exist
only for v > vmin. This finding means that the minimal
propagation velocity in this case is zero, so that the front
velocity tends to zero in the course of time.

4. FRONT MOVING AT A DECAYING VELOCITY

Numerical simulations of Refs. (5) suggest that the front
does propagate, but its propagation velocity decays in
course of the time. Assuming the constant front form,
one could imagine, that the asymptotic solution of the
linearized equation could, for example, follow the pattern

A(x, t) = A0 exp
[

−λ0

(

x− v0t
α−1

2

)]

= A0 exp(−λ0z) (7)

with the constant v0 indicating now the subvelocity of

the front. Here z = x − v0t
1+α

2 is the variable defining
the comoving frame of the front whose velocity decays as
v ∝ t(α−1)/2. However, substitution of Eq.(7) into Eq.(4)
shows that Eq.(7) is not a at all. Thus, the subdiffusion
analog of the FKPP equation does not possess a front
solution of constant form with the velocity decaying as
v ∝ t(α−1)/2.

Interestingly enough, a different form of the solution is
possible, the one with decaying width:

A(x, t) = A0 exp
[

−λ0t
1−α

2

(

x− v0t
1+α

2

)]

, (8)

where λ(t) = λ0t
1−α

2 gives the time-dependent width of
the front. Proceeding as in Ref. (4) we have in first order
for the A-particles:

∂A(x, t)

∂t
≈ kA(x, t) +

a2

2

t
∫

0

M(t− t′)∆ exp
[

−λ0t
′
1−α

2 (x− v0t
′

α+1

2 )
]

dt′

+
a2

2

t
∫

0

M(t− t′)k ×

×
t

∫

t′

∆exp
[

−λ0t
′′

1−α

2

(

x− v0t
′′

1+α

2

)]

dt′′ dt′

Evaluating the integrals we get for both z = x − v0t
1+α

2

and t large:

λ0v0 exp
[

−λ0t
1−α

2

(

x− v0t
1+α

2

)]

= exp
[

−λ0t
1−α

2

(

x− v0t
1+α

2

)]

×

×
(

a2

2Γ(α)Γ(1 − α)τα

(

Cλ2
0 +

kλ0

v0
(1 − C)

)

+ k

)

,

where C is a constant (depending on the parameters of
the model) for which the inequality B(α, 2 − α) ≥ C ≥ 0
holds. The upper bound B(α, 2 − α) is the Beta function.
This yields the dispersion relation for λ0:

0 = λ2
0 −

kK∗

α(1 − C)/v0 − v0
K∗

αC
λ0 +

k

K∗

αC

with K∗

α = a2/2Γ(α)Γ(1 − α)τα = Kα/Γ(α), where Kα

is the generalized diffusion constant. Solving this equation
for λ we find a restriction on the values of v0 for which
this λ is real: (kK∗

α/v0(1 − C) − v0)
2 ≥ 4kK∗

αC, a quartic
equation in v0 which yields in general four symmetric roots

v2
0 = K∗

αk
[

1 + C ± 2
√
C

]

. (9)

In the FKPP case pertinent to normal diffusion the value
of C is C = 1, the minimal front velocity vmin = ±2

√
Dk

is reproduced; the other solution is a double root v =
0, which is a non-physical one and appears due to the
overall higher order of the dispersion relation obtained
by this method. For any C other than C = 1 there
exists bounded domain of real roots around zero, −v− ≤
v0 ≤ v− (the subscript “−” corresponds to the minus
sign in Eq.(9)) separated by gaps from another domain
of real roots |v0| > v+. The existence of the gap and
of the corresponding minimal velocity can be interpreted
in favor of propagation of the corresponding front. Of
course, such an analysis is still incomplete without looking
at the stability of corresponding perturbations. There
exists however a strong physical argument in favor of the
existence of the propagation mode described above.

5. THE CROSSOVER ARGUMENT

In order to gain intuition about the front’s behavior,
we make use of the following idea: for any waiting time
PDF ψ(t) with finite mean waiting time 〈t〉, the classical
(FKPP) behavior is recovered if only the time t is large



enough, t≫ 〈t〉. We therefore consider a truncated power-
law waiting time distribution

ψT (t) =
τα(τ + T )α

(τ + T )α − τα

α

(τ + t)1+α
Θ(T − t)

with T ≫ τ which possesses a mean

〈t〉 =
αTτ + τ (τα − (T − τ)α)

(α− 1) (τα − (T − τ)α)
.

For T ≫ τ , 〈t〉 ≈ α
1−ατ

αT 1−α. For short times τ <
t ≪ T , when particles cannot yet feel the cutoff, this
distribution is practically a power law, Eq.(2), and the
behavior of the front velocity will be similar to that
in subdiffusion, whereas for large times the behavior is
the classical one with a constant velocity given by the
minimal propagation velocity in FKPP. There has to be a
crossover at a time tcr between these two regimes. Thus,
we assume that in the anomalous domain the velocity is
time-dependent, vSD ∝ tβ , and that after a crossover to
normal behavior vD = const ∼

√

kD(T ) sets on. Here
D(T ) is the final diffusion coefficient, D(T ) = a2/2〈t〉
depending on the cutoff time T . The subscripts SD and
D indicate the regimes of subdiffusion and of normal
diffusion, respectively. The number of performed steps, a
measure of mobility, is nD(t) = t/〈t〉 in the normal regime
t≫ tcr, and nSD(t) = (Γ[1+α]τα)−1tα in the subdiffusive
regime t ≪ tcr. By equating nSD(tcr) = nD(tcr) at the
two sides of the crossover we find tcr ∝ T . The velocities
on both sides at the crossover time have to be of the
same order of magnitude and therefore vSD(tcr) ∝ tβcr ∝
√

kD(T ). Since tcr ∼ T and D(T ) ∼ Tα−1 we get β = (1−
α)/2 and thus

v(t) ∝ t
α−1

2

in the subdiffusive regime t≪ tcr.

The same argument applies to the front’s width. The width
of the front in the normal FKPP regime is of the order
of w ≃ D/v =

√

D/k. Taking the width of the front
to behave as w(t) ∝ tγ for t < tcr and matching this
width with the width of the front in FKPP at tcr we get

w ∝ t
α−1

2 , in accordance with the previous section.

6. BREAKDOWN OF THE CONTINUOUS
DESCRIPTION AND FINAL ASYMPTOTICS

Since the subdiffusive front is not only slowing down but
also becomes steeper in the course of time, a Monte-Carlo
simulation, if performed long enough, enters a regime
where the width of the front is comparable to the one of
microscopic scales of the problem, the compartment size a
or the interparticle distance B−1

0 = 1. The first happens
at high concentrations, where there are many particles
per compartment, the second at low concentrations. Both
situations lead to similar behavior of the front’s velocity.

Since in continuous time random walks the rate of the
particle’s jumps R(t) decays in the course of time, at
longer time one enters the regime, when the mean time
between the two jumps of the particles within the front
region gets large compared to the time of the order of
kB0 necessary for full conversion of all particles from B

to A in a compartment where at least one A particle is
present. Within this picture, the front can be considered
as “atomically sharp”, and is placed exactly between the
last compartment containing A particles and the first A-
free compartment. This front moves exactly one a-step
forward, when an A-particle from the compartment left
from the front makes its jump to the right. Since the rate of
these jumps is proportional to the number of the particles
in the compartment aB0 and to R(t), the velocity goes as

v ∝ a2B0

(

tα−1

τα

)

∝ B0Kαt
1−α.

This is the situation pertinent to high concentration of
particles.

The case of low concentrations (much less then one particle
per compartment) needs for a slightly different discussion,
parallel to one in Ref. (6). The front is again “atomically
sharp”: If the A and the B particles meet in the same
compartment, they have enough time to react before
making a jump, and therefore there are no B particles to
the left of the front position and no A particles to the right
of it. The front position can be associated with the one of
the rightmost A. This one does not change at the average
as long as there is a single particle in a compartment (the
jumps to the left and to the right are equally probable), but
does increase by a with probability 1/2 if another particle
is present in the same compartment (the probability of
which is of the order of aB0) since in this case the front
cannot jump back. The mean velocity differs from the
previous one only in prefactor: v ∝ (a/2)aB0t

α−1/τα ∝
B0Kαt

1−α.

The result v ∝ B0Kαt
1−α is exactly what follows imme-

diately from the dimensional analysis, if one assumes that
the reaction is infinitely fast on the time scale of jumps
and therefore the reaction rate coefficient k cannot play
any role.

7. CONCLUSIONS

We discussed the motion of a reaction front in the A+B
→ 2A reaction under subdiffusion in a system where
the transport of the particles is described by continuous
time random walks but the reaction between them locally
follows the mass action law. We show, that the reaction
front in such a system moves at intermediate times at a
decaying velocity v ∝ t(α−1)/2, and that this velocity has
to cross over to a faster decay v ∝ tα−1 in the asymptotics
of very long times.
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