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1. INTRODUCTION 

The most known and popular fractional derivatives are 
almost surely the Riemann-Liouville (RL) and the Caputo (C) 
derivatives (Kilbas et al, 2006, Podlubny, 1999; Samko et al, 
1987). Without considering the reserves put before 
(Ortigueira et al, 2005), we are going to face two related 
questions: 

1) Can we formulate those derivatives in the complex 
plane?  

2) Is there a coherent relation between those derivatives and 
the incremental ratio based Grünwald-Letnikov (GL) or 
its generalization? 

 

In this paper we are going to give positive answers for those 
questions, by constructing formulations in the complex plane 
obtained from the GL. We are going to follow the procedures 
previously (Ortigueira and Coito,2004; Ortigueira,2006) . We 
start from the general formulation of the incremental ratio 
based Grünwald-Letnikov (Ortigueira and Trujillo, 2009) and 
consider only the forward case. From it we obtain an integral 
formulation for the difference that leads to the Cauchy type 
fractional derivative {see, for example, (Campos, 1984,1987; 
Nishimoto,1989;Samko et al,1987)}. This is the main 
contribution of this paper: establish a bridge between the GL 
derivative and integral formulations in the sense that these 
come logically from the other. The particularization for the 
Hankel integration path allows us to obtain regularised 
integrals for the positive order case. This gives a logical 
justification for the previous derivation in the Caputo 
derivative case and the pos derivation in the Riemann-
Liouville case.  

The paper outlines as follows. In section 2 we will present the 
general formulation of the GL derivative, while the integral 
formulation is obtained in section 3. Using the Hankel path 
we obtain the corresponding regularised derivative, presented 

in section 4.  We consider two cases: functions analytic on 
the whole complex plane and functions defined on a half 
plane and identically null on the other.  

Remark: In this paper we deal with a multivalued expression 
zα. As is well known, to define a function we have to fix a 
branch cut line and choose a branch (Riemann surface). It is a 
common procedure to choose the negative real half-axis as 
branch cut line. Unless stated the contrary, in what follows 
we will assume that we adopt the principal branch and 
assume that the obtained function is continuous above the 
branch cut line. With this, we will write (-1)α = ejαπ.   

2. THE GL FRACTIONAL DERIVATIVE 

The Grünwald-Letnikov fractional derivative is the most 
straightforward definition, since it is the generalization of the 
classic derivative that is recovered when the order becomes 
positive integer. We here introduce the following 
modification of the mentioned fractional derivative by the 
limit of the fractional incremental ratio (Ortigueira and 
Trujillo, 2009)  
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|h|→0
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where ( )αk   stands for the binomial coefficients and h = |h|ejθ 
is a complex number, with θ∈(-π,π]. The above definition is 
valid for any order, real or complex. In general, if θ = 0, we 
call (1) the forward Grünwald-Letnikov derivative  
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Let θ = π and substitute h for |h| to obtain the backward 
Grünwald-Letnikov derivative 
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It is important to enhance again that when α is a positive 
integer we obtain the classic expressions for the integer order 
derivatives.  It is not a simple task to formulate the weakest 
conditions that ensure the existence of the fractional 
derivatives (1), (2) and (3), although we can give some 
necessary conditions for their existence. To study the 
existence conditions for the fractional derivatives we must 
care about the behaviour of the function along the half 
straight-line z±nh with n∈Z+. If the function is zero for Re(z) 
< a∈R (resp. Re(z) > a) the forward (backward) derivative 
exists at every finite point of f(z). In the general case, we 
must have in mind the behavior of the binomial coefficients. 

They verify   
α
k  ≤ 

A
kα+1  meaning that f(z).

A
kα+1  must 

decrease, at least as 
A

k|α|+1  when k goes to infinite. For 

example considering the forward case, if α > 0, it is enough 
that f(z) be bounded in the left half plane, but if α < 0, f(z) 
must decrease to zero to obtain a convergent series. In 
particular, this suggests that Re(h) > 0 and Re(h) < 0 should 
be adopted for right and left functions (1), respectively in 
agreement with Liouville reasoning (Dugowson). In 
particular, they should be used for the functions such that 
f(z)=0 for Re(z)<0 and f(z)=0 for Re(z)>0, respectively2. This 
is very interesting, since we conclude that the existence of the 
fractional derivative depends only on what happens in one 
half complex plane, left or right. 

 

3. THE GENERAL CAUCHY DERIVATIVE 

Assuming that f(z) is analytical in a region that includes the 
straight line in figure 1, we can write 

D
α
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|h|→0

Γ(α+1)
2πjh  
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
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 f(w)
Γ( 

w - z
h )

Γ(
w - z

h +α+1)
 dw   (4) 

where Cd is any U shaped contour that encircles the half 
straight line starting at z. Commuting the limiting and 
integral operations and computing the limit (Ortigueira and 
Coito,2004), we obtain the generalised Cauchy integral  

 D
α
θf(z)  = 

Γ(α+1)
2πj ⌡⌠

Cd

 
  f(w)

1

( )w - z
α+1 dw  (5) 

where Cd is any U shaped contour that encircles the half 
straight line starting at z that is the branch cut line of w-α-1. 
For existence conditions see (Campos,1984,1993). 
                                                 
1 We say that f(z) is a right [left] function if f(-∞) = 0 [f(+∞) = 0]. 
2 By breach of language we call them causal and anti-causal 
functions borrowing the system terminology. 

 
Fig. 1 – integration paths and poles for the integral 

representation of fractional order differences 

 

4. THE REGULARISED DERIVATIVE 

Consider the generalised Cauchy formula (5) and rewrite it in 
a more convenient format obtained by a simple translation: 

D
α
θf(z)  = 

Γ(α+1)
2πj  
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C

 

 f(w + z) 
1

w α+1 dw   (6) 

where we assume that f(z) is analytic in a region that contains 
the contour C. This is the translated version of Cd. Here we 
will choose C as a special integration path: the Hankel 
contour represented in figure 2. We assume that it surrounds 
the selected branch cut line. This is described by x.ej(θ+π), with 
x∈R+ and θ∈[-π,π). The circle has a radius equal to ρ small 
enough to allow it to stay inside the region of analyticity of 
f(z). With this contour, we can decompose (6) into three 
integrals along the two half-straight lines and the circle. It is 
interesting to remark that if α is a positive integer, the 
integrals along the straight lines cancel out and it remains the 
integral over the circle: we obtain the usual Cauchy formula. 

 
Figure 2 – The Hankel contour used in computing the 

derivative defined in equation (5) 



 
 

     

 

If α is a negative integer, the integral along the circle is zero 
and we are led to the well known repeated integration 
formula (Nishimoto,1989; Samko et al 1987). In the general 
α case we need the two terms. Performing the computations, 
we obtain the general regularised derivative 
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where γθ is a half straight line starting at w=0 (Ortigueira, 
2003) and N=α (3). If α is negative, the summation inside 
the integral in (7) is zero. We must refer that this derivative 
formulation does verify the additivity law of the orders (8) 
contrarily to the stated by Li et al  (2009). 

 

5. RL AND C DERIVATIVES IN THE 
COMPLEX PLANE 

As it is easy to prove, we have, from (1) 

D
α
θ  [ ]D

β
θf(t)   = D

β
θ [ ]D

α
θf(t)  = D

α+β
θ f(t)  (8) 

provided that both derivatives (of orders α and β) exist. This 
means that the fractional derivative as introduced in (1) 
verifies the semi group property in which refers to the 
derivative orders. This is important and not enjoyed by other 
derivatives. So, we can write: 

D
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1
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Let us choose, β=n∈Z+ and ε=n-α>0. We obtain: 
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or 
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that can be considered as a Caputo-Cauchy derivative, 
provided the integral exists. This is valid because f(z) is 
analytic and we assumed that the GL derivative exists. 
Consider again the integration path in figure 2. As before, we 
can decompose (10) into three integrals along the two half-
straight lines and the circle. We have, then:    
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3 α means “the greatest integer less than or equal to α”. 

Over C1 we have w=x.ej(θ-π), while over C3 we have 
w=x.ej(θ+π), with x∈R+, over C2 we have w=ρejϕ, with ϕ∈(θ-
π,θ+π). We can write, at last: 
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For the first term, we have: 
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where we assumed that f(n)(x.ej(θ-π) +z) = f(n)(x.ej(θ+π) +z), 
because f(z) is analytic. For the second term, we begin by 
noting that the analyticity of the function f(z) allows us to 
write: 

f(-x.ejθ +z) = ∑
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∞
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for x < r∈R+. We have also 
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Performing the integration, we have: 
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As ρ decreases to zero, the summation in the last 
expression goes to zero. This means that when ρ→0 

D
α
θf(z) = ejεθ.

1
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∞
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(n)
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This can be considered as a generalised Caputo derivative. In 
fact, with θ = 0, we obtain: 
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that is the forward Caputo derivative in R.  
Now, return to (5) and put α=n-ε, with ε>0, again: 
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But, as 

(w – z)ε-n-1 = 
1

(1-ε)n
Dn

z(w - z)ε-1 (20) 

we obtain, by commuting the operations of derivative and 
integration 
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We may wander about the validity of the above commutation. 
We remark that the resulting integrand function is well 
behaved than the original, ensuring that we gain something 
on doing such operation. The formula (21) is the complex 
version of the Riemann-Liouville derivative that we can write 
in the format 
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Using again the Hankel integration path, we obtain easily: 
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 f(-x.ejθ + z) xε-1 dx   (23) 

that is a generalised RL derivative. With θ = 0, we obtain the 
usual formulation of the RL in R. With θ = π, we obtain aside 
a factor the “right” RL derivative. 

 

6. HALF PLANE DERIVATIVES 

Let us assume that f(z) = 0 for Re(z) < 0. In this case, the 
summation in (1) goes only to Re(z)/Re(h) and the 
integration path in (4) is finite, closed and completely in the 
right half complex plane. In figure 3 we assumed that z and h 
are real. 

 
Figure 3 – The contour used in computing the half plane 

derivatives 

Consider a sequence hn going to zero. The number of poles 
inside the integration path is Re(z)/Re(h), but in the limit, 
the quotient of 2 gamma functions will give rise to a 
multivalued expression that forces us to insert a branch cut 
line that starts at z and ends at -∞. Over this line the integrand 
is not continuous. So, we obtain: 

D
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where C is an open contour that encircles the branch cut line 
and γ is a small line passing at w = 0 whose length we will 
reduce to zero. However, we prefer to use the analogue to the 
Hankel contour. The contour γ is a short straight line over the 
imaginary axis. Although the integrand is not continuous, the 
phase has a 2π jump, the second integral above is zero. To 
compute the others, we are going to do a translation to obtain 
an integral similar to the used above. 

As before and again for reducing steps, we will assume 
already that the straight lines are infinitely near to each other. 
We have, then:    
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Over C1 we have w=xej(θ-π), while over C3 we have 
w=x.ej(θ+π), with x∈R+, over C2 we have w=ρejϕ, with ϕ∈(θ-
π,θ+π). 

 
Figure 4 – The Hankel contour used in computing the 

derivative defined in equation (25) 

 
Let ζ = |z|. We can write, at last: 
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For the first term, we have: 
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where we assumed again that f(x.ej(θ-π) +z) = f(x.ej(θ+π) +z), 
because f(z) is analytic.  

For the second term, we begin by noting that the analyticity 
of the function f(z) allows us to write: 
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for x < r∈R+. We have, then: 
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Performing the integration, we have: 
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Substituting it in (30) and joining to (27) we can write: 
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If α<0, we make the inner summation equal to zero. Using 
the reflection formula of the gamma function we obtain for K  

K=- 
Γ(α+1)e-jπα

 π  sin(απ) = 
e-jθα

Γ(-α)   (32) 

Now let ρ go to zero. The second term on the right hand side 
in (31) goes to zero and we obtain: 
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This result shows that in this situation and with α>0 we have 
a regularised integral and an additional term. This means that 
it is somehow difficult to compute the fractional derivative 
by using (33): a simple expression obtained from (2) 
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leads to a somehow complicated formation in (33). However, 
if α < 0 we obtain: 
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So, we must avoid (33). To do it, remark first that, from (8) 
and (34) we have: 
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This means that we can compute the α order derivative into 
two steps. As one step is a fractional primitivation, we avoid 
(33) and use (35). The order of the steps: computing the 
integer order derivative before or after the primitivation leads 
to: 
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x α+1   dx   (37) 

and 

D
α
θf(z) =K.Dn

 ⌡
⌠

0

 ζ

 
 f(-x.ejθ + z) 

x α+1   dx   (38) 

that are the C and RL formulations in the complex plane. 
However, from (36) we can write also: 

D
α
θf(z)  = e-jθα lim

|h|→0
 

∑
k = 0

 ζ/h
 (−1)

k
 ( )-ε

k  f(n)(z − kh)

 |h|
α  (39) 

and 

D
α
θf(z)  = 








e-jθα lim
|h|→0

 

∑
k = 0

 ζ/h
 (−1)

k
 ( )-ε

k  f(z − kh)

 |h|
α

(n)

 (40) 

These results mean that: 

We can easily define C-GL (39) and RL-GL (40) derivatives 

Attending to the way we followed for going from GL to C 
and RL, we can conclude that, in the case of analytic 
functions, the existence of RL or C derivatives ensure the 
existence of the corresponding GL. The reverse may be not 
correct, since the commutation of limit and integration in (6) 
may not be valid. 
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