
Stationary states for anomalous diffusion

Bart lomiej Dybiec ∗ Igor M. Sokolov ∗∗

Aleksei V. Chechkin ∗∗∗

∗ M. Smoluchowski Institute of Physics, and Mark Kac Center for
Complex Systems Research, Jagellonian University, ul. Reymonta 4,

30–059 Kraków, Poland (e-mail: bartek@th.if.uj.edu.pl).
∗∗ Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse

15, D–12489 Berlin, Germany (e-mail:
igor.sokolov@physik.hu-berlin.de)

∗∗∗ School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv
69978, Israel and Institute for Theoretical Physics NSC KIPT,

Akademicheskaya st. 1, Kharkov 61108, Ukraine, (e-mail:
achechkin@kipt.kharkov.ua)

Abstract: The fractional Fokker-Planck equation serves as a standard description of the
anomalous diffusion. Within a current presentation we study properties of stationary states of
the fractional Fokker-Planck equation in bounding potentials with special attention to the way
in which stationary states are approached. It is demonstrated that the shape of the stationary
state depends on the exponent characterizing the jump length distributions and the external
potential. The convergence rate to the stationary state can be of the double power-law type and
is determined solely by the subdiffusion parameter.
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1. INTRODUCTION

The most elaborated version of the diffusion equation
corresponds to the Markovian diffusion process which usu-
ally occurs when interactions of the test particle with
the surroundings are determined by a large number of
independent and bounded collisions. Anomalous diffusion
typically arises when we relax the assumption about the
bounded type of interaction and/or when we assume that
due to trapping events the waiting time distribution is
of the power-law type, see Metzler and Klafter (2000).
For example, assuming anomalously long waiting times
(p(t) ∝ t−(ν+1)) (0 < ν < 1) and anomalously long jumps
(p(x) ∝ |x|−(α+1)) (0 < α < 2), one arrives at an anoma-
lous, non-Markovian diffusion which is described by the
fractional (time and space) Fokker-Planck equation. Frac-
tional derivatives entering the fractional diffusion equation
emerge due to waiting times (fractional time derivative
of the Riemann-Liouville type) and due to jump lengths
(fractional space derivative of the Riesz-Weyl type). In
the force free regimes, main properties of solutions to the
anomalous Fokker-Planck equation are well known, see
Saichev and Zaslavsky (1997); Metzler and Nonnenmacher
(2002); Dybiec and Gudowska-Nowak (2009). However,
the situation drastically changes when anomalous diffusion
takes place in the external potential, see Dybiec (2010).

We discuss properties of the solution to the fractional
Fokker-Planck equation in the single-well potentials. It is
demonstrated that the existence of the stationary state is
determined by the jump length distribution and the po-
tential, see Dybiec et al. (2010). For example, if jumps are

distributed according to the α-stable density, stationary
states exist only for potential wells which are steep enough,
see Chechkin et al. (2002, 2003, 2004, 2006); Dybiec et al.
(2007, 2010). Furthermore, if a stationary state exists, it is
not of the Boltzmann-Gibbs type, see Eliazar and Klafter
(2003). In particular, for the parabolic potential the sta-
tionary state is given by the same α-stable density, i.e.
it has the power-law asymptotics and diverging variance,
see Chechkin et al. (2002, 2003, 2004, 2006); Dybiec et al.
(2007). On the one hand, in order to produce stationary
states characterized by finite variance it is necessary to
consider potential wells which are steeper than parabolic.
On the other hand, in the extreme case of a free particle,
the stationary state does not exist. Nevertheless, it is not
known what happens in the intermediate states, i.e. for
potential wells of the |x|c type with 0 < c < 2. Therefore,
the current presentation investigates this problem, report-
ing results of recent computer simulations, see Dybiec et al.
(2010).

The presence of the fractional time derivative does not
affect the existence and shape of stationary states. Never-
theless, it changes the way in which the stationary states
are reached, see Dybiec (2010). This can be quantified by
measuring the rate of the convergence to the stationary
state. We discuss how the rate of convergence can be mea-
sured and how subdiffusion influences the time dependence
of solutions to the fractional Fokker-Planck equation in
single-well static potentials, see Dybiec (2010). Finally, we
examine the role of competition between long jumps and
long waiting times on the way in which the stationary state
is reached.



2. MODEL

Using the subordination method, see Magdziarz and
Weron (2007); Magdziarz et al. (2008, 2007), we study
properties of the solutions of the fractional Fokker-Planck
equation of the form

∂p(x, t)

∂t
= 0D

1−ν
t

[

∂

∂x
V ′(x) +

∂α

∂|x|α
]

p(x, t), (1)

see Metzler et al. (1999); Metzler and Klafter (2000).
In Eq. (1), V (x) represents the external static po-
tential, ∂α/∂|x|α stands for the Riesz-Weyl fractional
(space) derivative while 0D

1−ν
t denotes the Riemann-

Liouville fractional (time) derivative. The Riesz-Weyl frac-
tional derivative is defined via the Fourier transform

F
[

∂αf(x)
∂|x|α

]

= −|k|αf̂(x) while the Riemann-Liouville

fractional (time) derivative is defined by the relation

0D
1−ν
t f(x, t) = 1

Γ(ν)
d
dt

∫ t

0
dt′ f(x,t′)

(t−t′)1−ν
, see Podlubny (1998);

Metzler and Klafter (2000).

The fractional (space) derivative of the order α is a
consequence of the power-law asymptotics of the jump
length distribution, i.e. for α < 2, p(x) ∝ |x|−(α+1). In
the limit of α = 2 the fractional derivative in Eq. (1) is
replaced by the partial derivative of the second order. The
fractional (time) derivative of the order ν is responsible
for the non-Markovian character of the stochastic process
underlying Eq. (1). For ν = 1, the fractional derivative
is equivalent to the identity operator and the underlying
process becomes a Markovian Levy flight, see Metzler and
Klafter (2000).

In following sections we report results on the existence of
stationary states in single-well potentials. We also discuss
the problem of the convergence rate to stationary states
in the single-well quartic potential under subdiffusion.

3. RESULTS

3.1 Stationary states

The stationary solution of Eq. (1) fulfills
[

∂

∂x
V ′(x) +

∂α

∂|x|α
]

p(x) = 0. (2)

A stationary state of a system described by Eq. (1) is
determined by the stability index α and a potential and
it is the same as in the case of Lévy flights in external
potentials, see Jespersen et al. (1999); Chechkin et al.
(2002, 2003, 2004, 2006); Dybiec et al. (2007). In order to
confine Lévy flights the potential V (x) needs to bee steep
enough, see Jespersen et al. (1999); Chechkin et al. (2002,
2003, 2004, 2006); Dybiec et al. (2007). In particular, for
the parabolic potential, V (x) = x2/2, the stationary state
is given by the α-stable density characterized by the same
stability index α as the noise in the underlying Langevin
equation, see Jespersen et al. (1999); Chechkin et al. (2002,
2003, 2004, 2006); Dybiec et al. (2007), and the order of
the fractional Riesz-Weyl derivative. Consequently, for the
harmonic potential, the stationary probability density is
characterized by the diverging variance, see Janicki and
Weron (1994); Nolan (2010). Stationary states character-
ized by the finite variance exist for potential wells steeper
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Fig. 1. Time dependent solutions of the fractional Fokker-
Planck equation (1) for the stability index α = 2
(Gaussian case, see Eq. (6), left column) and α = 1
(Cauchy case, see Eq. (7), right column). The top row
presents results at time t = 25, while the bottom
row at time t = 250. Various curves correspond to
different values of the subdiffusion parameter (ν =
{0.2, 0.4, 0.6, 0.8} and ν = 1). Histograms were con-
structed by the subordination method with the time
step of integration ∆t = 10−3 and averaged over 106

realizations.

than the parabolic, see Chechkin et al. (2002, 2003, 2004,
2006); Dybiec et al. (2007).

In general, for single-well potentials of V (x) ∝ |x|c type,
stationary states exist for

c > 2 − α (3)

while stationary states characterized by the finite variance
exist for

c > 4 − α. (4)

Conditions (3), (4) and (5) can be derived from properties
of the Riesz-Weyl fractional derivative, see Eq. (2) and
Chechkin et al. (2002, 2003, 2004, 2006); Dybiec et al.
(2010). Furthermore, if the stationary state exists, its
complementary cumulative density has asymptotic power-
law decay

Fc(x) ∝ x−(c+α−2) (5)

which is clearly demonstrated in Fig. 2, see also Dybiec
et al. (2010).

Next, we focus on the investigation of the convergence
rate of the system described by Eq. (1) to its stationary
states, see Dybiec (2010). As a value of the stability index
α we choose α = 2 (Gaussian case) and α = 1 (Cauchy
case) because such a set of parameters leads to known
stationary solutions for the single-well quartic potential
(V (x) = x4/4).

For α = 2, the stationary solution of Eq. (1) is of the
Boltzmann-Gibbs type and attains the form

p2(x) =

√
2

Γ(1
4 )

exp

[

−x4

4

]

. (6)

In the Cauchy (α = 1) case the stationary solution is

p1(x) =
1

π(x4 − x2 + 1)
, (7)
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Fig. 2. The complementary cumulative density Fc(x) =
1 − F (x) = 1 −

∫ x

−∞ p(x′)dx′ for V (x) = |x|1.5 and
α = 1.1. The solid line represents the theoretical
decay predicted by Eq. (5).
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Fig. 3. The accumulated distance W 2(t) (see Eq. (8))
between the estimated probability density (p̂α(x, t))
and the stationary probability density (pα(x)) as a
function of time for the Gaussian case (top panel,
see Eq. (6)) and the Cauchy case (bottom panel, see
Eq. (7)).

see Chechkin et al. (2002, 2003, 2004, 2006).

3.2 Rate of convergence to stationary states

The way in which the time dependent solution pα(x, t) of
Eq. (1) approaches the stationary solution pα(x) can be
measured by the accumulated squared difference between
stationary and time dependent solutions

W 2(t) =
N

∑

i=1

[pα(xi) − p̂α(xi, t)]
2 , (8)

where pα(x) is a theoretical stationary density, see Eqs. (6)
and (7) and p̂α(x, t) is the numerically estimated his-
togram, see Dybiec (2010).

Long time asymptotic properties of W 2(t) can be deter-
mined by approximating Eq. (8) as W 2(t) =

∫ ∞

−∞[pα(x)−
pα(x, t)]2dx and using the time dependent solution of
Eq. (1) which can be constructed by the separation of
variables, see Risken (1984); Gardiner (2009); Metzler
and Klafter (2000); Dybiec (2010). After the integration
over the space variable x, the asymptotic behavior of the
distance W 2(t) can be determined by use of the asymp-
totic properties of the Mittag-Leffler function, see Glöckle
and Nonnenmacher (1994); Metzler and Klafter (2000).
Finally, one arrives at

W 2(t)∝Bαt−2ν + Cαt−ν , (9)

where Bα and Cα are unknown constants, see Dybiec
(2010).

For ν < 1 and α < 2, Eq. (1) describes the situation when
there is a competition between long waiting times and long
jumps. The shape of the stationary state is determined
by the potential and the exponent characterizing the
jump length distribution, see Eq. (2) and Fig. 1. The
subdiffusion parameter ν controls the convergence rate to
the stationary state. For ν < 1, the system possesses long
memory about its initial condition. This is manifested by
the persistent cusp at the origin which is due to the initial
condition, i.e. p(x, 0) = δ(x), see Fig. 1.

For ν < 1, from Eq. (9) it implies that the asymptotic
dependence of the distance W 2(t) is of the power-law
type. This is well corroborated by results of numerical
simulations depicted in Fig. 3. Furthermore, for ν / 1
the crossover between initial (faster) t−2ν decay and final
(slower) t−ν decay is visible. For ν = 1, the decay of
single modes of the Fokker-Planck equation is described
by the exponential function. Consequently, in such a case
the asymptotic decay of the distance W 2(t) is exponential.

4. CONCLUSIONS

For systems described by the fractional Fokker-Planck
equation the shape of stationary density is determined by
the potential and the value of the exponent α character-
izing the jump length distribution. Consequently, in order
to assure the existence of the stationary state the potential
needs to be steep enough. For single-well potentials of |x|c
type, stationary states exist for c > 2 − α, see Chechkin
et al. (2002, 2003, 2004, 2006); Dybiec et al. (2007, 2010).

Using analytical arguments we have shown that the dis-
tance between time dependent solutions and stationary
states can decay in time as a double-power law. Exponents
characterizing the power-law decay are determined by the
subdiffusion parameter ν. In the case of the Markovian dif-
fusion, the distance between time dependent and station-
ary solutions displays exponential long time asymptotics.

Analytical predictions were confirmed by numerical sim-
ulations of the fractional Fokker-Planck equation which
were carried out using the subordination method, see
Magdziarz and Weron (2007); Magdziarz et al. (2008,



2007). Numerical simulations were performed for the quar-
tic potential (V (x) = x4/4) with Gaussian (α = 2) and
Cauchy (α = 1) noise because for these two cases analyti-
cal expressions for stationary densities are known. Numer-
ical simulations clearly showed the power-law decay of the
distance between time dependent and stationary solutions.
Moreover, for the value of the subdiffusion parameter close
to 1, the crossover between faster and slower decay of the
distance is well visible.
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