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Instantaneous variation of wind speed due to changes in the weather can lead to electrical power 
variations. Such fluctuations can cause instabilities in the wind energy systems production. To overcome 
these difficulties, it is necessary to quantify wind speed fluctuations. In this paper we propose measuring 
these fluctuations using the fractal dimension. To estimate this parameter the Rectangular Covering 
Method we already developed is used. The method applied to hourly wind speed of Quebec station 
provides information that allows us to characterize the wind speed variation at this location 
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1. INTRODUCTION 

A major issue in the control and stability of wind energy 
production systems is to maintain the balance between 
generated and consumed power. Because of the fluctuating 
nature of wind speeds, the use of wind turbines for power 
generation has caused more focus on the fluctuations in the 
power production of the wind turbines.  

Indeed, instantaneous variation of wind speed due to changes 
in the weather can lead to electrical power variations. Lets 
recall that the wind power is dependent on the velocity of the 
wind to the third power, if the wind speed doubles, the power 
available from the wind increases by a factor of eight. Such 
fluctuations can cause instabilities in the wind energy 
systems production. Therefore, it is necessary to quantify the 
wind speed fluctuations.  

This paper presents a fractal approach to measure the wind 
speed variations. The approach is based on the fractal 
dimension as a tool for measuring the degree of the wind 
speed curves irregularity. 

Let us recall that the most significant characteristic of fractals 
is their fractal dimension. This latter which contains 
information about their geometrical structure is as a powerful 
tool for measuring the degree of their irregularity over 
multiple scales.  

For a curve, fractal dimension is between 1 and 2, it 
approaches 2 if it is extremely irregular and tends towards 1 
if it is more regular. Fractal dimension can then be used to 
compare the geometrical complexity of two curves.    

2. FRACTAL DIMENSION ESTIMATION 

To estimate the fractal dimension of curves, several methods 
exist. The most popular ones are the Box-Counting and the 
Minkowski-Bouligand methods. However, these techniques 
suffer from inaccuracy. Inspired by the Minkowski 
Bouligand method, a class of approaches to compute the 

fractal dimension of signal curves or one-dimensional 
profiles called covering methods is then proposed by several 
researchers (Tricot et al., 1988; Dubuc et al., 1989; Maragos 
and Sun, 1993).   

These methods consist in creating multiscale covers around 
the signal's graph. Indeed, each covering is formed by the 
union of specified structuring elements. In the method of 
Box–counting, the structuring element used is the square or 
limp, that of Minkowski Bouligand uses the disk. 

To improve the complexity and the precision of the fractal 
dimension estimation of time series, we have developed a 
new method called Rectangular covering Method (Harrouni 
et al., 2005; Harrouni and Guessoum, 2006, 2008) based on a 
rectangle as a structuring element of covering. 

1.1 Rectangular Covering Method 

The method consists in covering the curve for which we want 
to estimate fractal dimension by rectangles instead of disks 
like in Minkowski Bouligand approach. The choice of this 
type of structuring element is due to the discrete character of 
the studied signals. Thus, the rectangle allows combining 
every point on the x-axis with the corresponding point on the 
y-axis, thus achieving the covering of the signal without 
information loss. 

From the mathematical point of view, the use of the rectangle 
as structuring element for the covering is justified. Indeed, in 
(Bouligand, 1928) Bouligand showed that the 
MinkowskiBouligand dimension can be obtained by also 
replacing the disks in the previous covers with any other 
arbitrarily shaped compact sets that posses a nonzero 
minimum and maximum distance from their centre to their 
boundary.  

Thus, as shown in Fig. 1, for different time intervals  the 
area S() of this covered curve is calculated by using the 
following relation: 
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Fig. 1. An example of a curve covered by rectangles at 
 different scales  

N denotes the signal length (number of samples of the 
considered signal), f(tn) is the value of the function 
representing the signal at the time tn and | f (tn+) - f(tn) | is 
the function variation related to the interval . Bouligand 
defined the fractal dimension D as follows (Bouligand, 
1928): 

 SD  2  (2) 

 
where (S) is the similitude factor and it represents the 
infinitesimal order of S(). It is defined by:  
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ln is the logarithm Neperian. 

Replacing (S) by its value in (3) we obtain:  
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The properties of the logarithm permit us to put (4) under the 
following shape:  
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The fractal dimension is then deduced from the following 
relation by using the least-squares estimation:  

     0 as constant,/1ln/ln   ΔΔDΔΔS  (6) 

 
Thus, to determine the fractal dimension D which represents 
the slope of the straight line (6), it is necessary to use various 
time scales  and to measure the corresponding area S(). 
We then obtain several points (i, S(i)) constituting the 
line (6).  

A good estimation of the fractal dimension D requires a good 
fitting of the log-log plot defined by (6). Therefore, the 
number of points constituting the plot is important. This 
number is fixed by max which is the maximum scale over 
which we attempt to fit the log-log plot.  

To estimate the fractal dimension most of methods determine 
max experimentally. This procedure requires much time and 
suffers from precision. Also, we developed an optimization 
technique to estimate max.  

Figure 2, represents an example of log-log plot. Our 
optimization technique consists first in taking a max 
minimal about 10, because the number of points constituting 
the plot should not be very small then, max is incremented 
progressively as far as reaching N/2. We hence obtain several 
straight log-log lines which are fitted using the least squares 
estimation. The max optimal is the one corresponding to the 
log-log straight line with the minimum quadratic error. This 
error is defined by the following formula: 
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In this relation n denotes the number of points used for the 
straight log-log line fitting, di represents the distance between 
the points (ln(1/) , ln(S()/²)) and the fitted straight log-
log line. This distance is calculated as showed in figure 3. In 
this figure ln(1/) is denoted X and ln(S()/²)denoted Y. 
The distance di is calculated from the difference between the 
co-ordinates Y of these points.  

 

Fig. 2. An example of log-log plots fitted by the least squares  
estimation 



 
 

     

 

 

Fig. 3. Calculation of the distance di of real points 
constituting the log-log plots 

3. QUANTIFICATION OF WIND SPEED FLUCTUATION 

We propose here to measure the fractal dimension of wind 
speed series in other to quantify their fluctuations. 

3.1  Data Bank Description 

The data used in this study consist of hourly surface wind 
speeds (standard 10m level) after anemometer height 
adjustment recorded at the station of Quebec for the year of 
2006. These data have been extracted from the National 
Climate Data Archive of Environment Canada (AHCCD, 
2009).  

Figure 4 shows the annual variability in wind speed 
frequency distribution. As can be seen from the figure the 
distribution can be approximated as many other wind speed 
distribution by the Weibull function.  

 

Fig. 4. Hourly Wind Speed Distribution 

3.2  Fractal Treatment of Wind Speed 

Using the Rectangular Covering Method we have estimated 
the fractal dimension of the wind speed series described 
above for each day of the year.  

Figure 5 presents two examples of the log–log lines 
permitting the estimation of the fractal dimension of wind 
speed curves. This figure shows that the log–log points are 
grouped around the fitting line which demonstrates the self-
affinity of the studied wind speed. 

 

 

Fig. 5. Two examples of log-log plots fitted by the least 
squares estimation with their slopes which represent the 
estimated fractal dimension 

As an illustration of the results, we give in the figure 6 the 
evolution of the estimated fractal dimension for the month of 
January. 

 

Fig. 6. Variation of the fractal dimension over the month of 
January 

Figure 7 gives representative examples for three daily wind 
speed curves corresponding to different fractal dimensions. 
As can be observed there is good correspondences between 
the shapes of the signals and the corresponding fractal 
dimensions. 
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(a) 

 

(b) 

 

(c) 

Fig. 7. Daily evolution of hourly wind speed with their fractal 
 dimensions (a) February 04 1986 (b) May 05 1986 (c) 
August 10 1986 

Table 1 presents the monthly average, maximum, and 
minimum fractal dimensions obtained from the slopes of the 
log–log lines. 

Table 1 shows clearly that D fluctuates since the lowest value 
of this parameter is 1.16 and the highest one is 1.98. In order 
to quantify this fluctuation we calculated the annual average 
of D is equal to 1.64. To compare the degree of fluctuation of 
the hourly wind speed for the different months of the year we 
can refer to the average value of the fractal dimension for 
each month. 

These values suggest that the hourly wind speed exhibit the 
similar fluctuations for all months.  

Table 1.  Monthly average, lowest, and highest fractal 
dimension for the year 1986 

Month Average 
value of D 

Lowest 
value of D 

Highest 
value of D 

January 1.62 1.29 1.98 
February 1.57 1.16 1.95 

March 1.62 1.34 1.94 
April 1.66 1.37 1.92 
May 1.63 1.35 1.92 
June 1.68 1.30 1.93 
July 1.68 1.27 1.94 

August 1.66 1.38 1.92 
September 1.67 1.26 1.97 

October 1.59 1.21 1.84 
November 1.59 1.28 1.95 
December 1.64 1.30 1.96 

 

The other important parameter quantifying the wind speed 
fluctuation is the fractal dimension frequency distribution. 
This distribution describes the percentage of the fractal 
dimension between different levels.  Hence, in the figure 8 
we represent this distribution for the fractal dimension 
obtained. 

 

Fig. 8. Frequency distribution of the fractal  

This figure shows that the fractal dimensions grouped 
between 1.4 and 1.9. This result confirms that the wind speed 
of the studied site is characterized by middle to high values of 
fractal dimensions which demonstrates that the hourly wind 
speed presents relatively high fluctuations.  

4. CONCLUSION 

We have shown in this work that the fractal analysis 
described well the wind speed fluctuations.  The fractal 
dimensions estimated for hourly wind speeds in the site of 
Quebec using the Rectangular Covering Method we already 
developed suggested that this site is characterized as having 
winds with high degree of fluctuations in overall. This result 
plays an important role in the assessment of the efficiency of 
wind turbines installations in the studied site. Indeed, the 
wind speed fluctuations have a direct effect on the wind 
turbines response. Modelling of the wind fluctuations will 
then enable system operators to simulate the expected power 
fluctuations with a specified wind power development 
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scenario. This is useful to calculate the need for reserves to 
balance the power fluctuations. 
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