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Abstract: A unified system is presented to show three chabthamics of Lorenz, Chen and LU systems
in the same structure. Theses system will be diffdy distinguished when the relevant parametiesr
accordingly tuned. This paper deals with an asytigatity stability of fractional-order unified chaot
systems. A simple linear state feedback contradlegained to stabilize systems. This controlled
shown increases the stability region with respectheir integer order systems. Simulation resules a
demonstrated for Chen and LU fractional —orderesgstto illustrate the effectiveness of the proposed

control scheme.
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1. INTRODUCTION

Fractional calculus is a mathematical topic withrenthan
300 years old history but the application to physand
engineering has been reported only in the recestsyét has
been found that the behaviour of many physicalesgstcan
be properly described, using the fractional ordgstesm
theory. Heat conduction, dielectric polarizationectrode-
electrolyte polarization, electromagnetic wavescdtElastic
systems, quantum evolution of complex systems, tifative
finance and diffusion wave are among the known dyoal
systems that were modelled using fractional ordgra@ons.
In fact, real world processes generally or moseljikare
fractional order systems (Tavazoei and Haeri,
Furthermore, fractional order controllers such &ROBIE
(Oustaloup et. al., 1996), TID (Lurie, 1994), fiaoal PID

chaos suppression of known chaotic systems, sorekilus
methods have been developed. These includes tinay de
feedback control (Pyragas and Tamasevieius, 1988)g—
bang control (Vincent, Yu, 1991), optimal contrdlue,
Kernevez, 1991), intelligent control (Yeap, Ahmed94),
Adaptive control (Zeng, Singh, 1997) , etc.

The unified chaotic system is a chaotic system wiigpends
on a parameter([0,1]. If0<a < 0.8, the unified chaotic
system reduces to the generalized Lorenz chacsiesy the
unified chaotic system reduces to the LU chaotitesy when
a=0.8. For0.8<a < 1, the unified chaotic system reduces
to the generalized Chen chaotic system.

2009)

Chen (Chen and Lu, 2002) considered that the pdearoé
the two unified chaotic systems is unknown and deptive

controller (Podlubny, 1999) and lead-lag compensatgontroller was used to achieve synchronization dase

(Raynaud and Zerga Inoh, 2000) have been impleménte
improve the performance and robustness of somedlio®p

Lyapunov stability theory. Chen (Chen et. al., 2004
investigated the stabilization and synchronizatioh the

control systems. An application of fractional algebra is to unified chaotic system via an impulsive control heet Lu

model the fractional order chaotic systems. Thisdkbf
modelling provides more accuracy, less complexstyvall as
the possibility to increase the stability regiora{@zoei and
Haeri, 2009).

Chaos is a very interesting nonlinear phenomenoigh H
sensitivity to initial conditions is a main charagstic of
chaotic systems. Accordingly, these systems afeuwlif for
synchronization or control (Hosseinnia et. al., @0Due to
complex behavior, and coupling, the control andistzation
task of chaotic nonlinear systems have been orleeofajor
issues in control engineering area. In the pasadksca great
efforts has been devoted towards the chaos comobliding
stabilization of unstable equilibrium points, andore
generally, unstable periodic solutions. Particylairh case of

(Lu et. al., 2004) used linear feedback and adeptdntrol to
synchronize identical unified chaotic systems wdtily one
controller. Ucar (Ucar et. al., 2006) used a nadmnactive
controller to synchronize two coupled unified cli@systems
with three control inputs. Wang (Wang and Liu, 2D07
proved that the unified chaotic system is equivalen a
passive system and asymptotically stabilized @ctilibrium
points. Wang (Wang and Song, 2008) studied
synchronization problem of two identical unified actic
systems using three different methods. They usdidear
feedback controller, a nonlinear feedback method an
impulsive controller to synchronize the systems(4ribi et.
al., 2009) based on the sliding mode theory symihation
of two identical unified chaotic is discussed. histpaper, a
linear state feedback controller stabilizes frawtio order

the



unified chaotic system. The state feedback comtroll
increases the stability region of fractional ordsraotic
system. An advantage of the proposed controllerbeageen
when it is used to stabilize a fractional orderfiedi chaotic
system. Meanwhile the application on the integedeor
system will be shown failed.

The paper is organized as follows. Section 2 inetuthe
basic definition and preliminaries. State feedbechtroller
is proposed to stabilize of fractional order umdfiehaotic
systems in section 3. Results of numerical simutatare
given in section 4, to illustrate the effectiveneasis the
proposed controller. The paper will be closed lzpaclusion
in section 5.

2. PRELIMINARY DEFINITIONS

2.1. Fractional Algebra

Among several definitions of fractional derivatiyethe
following Caputo-type definition is more popular tivi
respect the rest (Caputo, 1967).

L[ gz O
Drf=) MO
Wf(t) g=m

wherem is the first integer number larger than

Definition 1. (Tavazoei and Haeri, 200%) saddle point of
index 2 is a saddle point with one stable eigerevalnd two
unstable ones.

Definition 2. (Tavazoei and Haeri, 2008ssume that a 3-D
fractional order chaotic system af= f(x) displays a chaotic
attractor. For every scroll existing in the chagatitactor, this
system has a saddle point of index 2 encircled tsy
respective scroll.

Theorem 1. (Tavazoei and Haeri, 2007) Assume that a 3-D

chaotic systemx = f(x) displays a chaotic attractor with

scrolls. Suppose\ is a set of unstable eigenvalues of these
saddle points. A necessary condition for fractiosgstem

D% = f(x) to exhibit ann-scroll chaotic attractor, similar to
the chaotic attractor of systenr f(x), to keep the
eigenvaluesi O A in the unstable region, satisfies:

2.
g>—tan
Vg [ Re(1)

Otherwise, at least one of these equilibriums besom
asymptotically stable and then attracts the neagjgctories.

|Im(A)| (2)

j, OAOA

2.2. Unified Chaotic System

In (LU et. al., 2002) considered a kind of chadticstem
which describes a class of unified form which isadle®ws:

3
%=(2w+10)(y—x) @)
dt
dy _
a—(28_3@')x_xz+ (297_ 1y
dz 8+a
—=Xy- z
dt 3

where X, y, zare state variables amle[O,]] is parameter of

system. LU et. al. (LU et. al., 2002) calls (3ua#ied chaotic
system because system (3) is chaotic for caly0,1] .

When0< a<0.8, system (3) is called as the generalized
Lorenz chaotic system. For=0.8, it is called LU chaotic
system. Similarly it is called generalized Chenatltasystem
when0.8<a < 1. Besides, let us introduce the fractional
version of equation (4). Standard derivatives afatipn (3)
are replaced by the following fractional derivatve

dix 4)
—=(250+10)(y — x

= )y - X)

dvy

F:(28_357)X_XZ+ (299’—1y

diz 8+a

— =Xy- z

dt? 3

where q with 0<qg<1lis the fractional order. Chaotic
behaviour of fractional order unified system of @hkel and
Lorenz-Like for gq=0.9,0.950.9 are shown in (Matouk,

2009). From equation (4) the generalised schenfimctional
order unified chaotic system can be give as follows
dx (y=% (5)
—=a(y- X
a2

q
d'y =bx—- xz+ cy
dt?
diz

W:xy— dz

3. STATE FEEDBACK CONTROL

3.1. Design of the Controller for Fractional ord€hen
System

From (Matouk, 2009) the fractional order Chen gysts
given as follows:

dix _ (y=% (6)
q

—‘it%(q—ai)x— XZ+ G

diz

e Rz




To obtain the Chenhaotic behaviour, parameters in equatiofroof. Despite of the applied state feedback controlfer i
(6) is set to (Matouk, 2009): fractional order Chen system the equilibrium poiatsl the
Jacobian matrix are obtained:

| o 0[=(0,0,0) (14)
From equations (6) and (7) the equilibrium pointsChen O, = (6.7749,6.7749,15)3

system are given by: O. =(~6.7749~ 6.7749,153
L, =(—0. 7 O. y

8 =40, =3,¢q=28 @)

0,=(0,0,0) (8)

0, =(6.9282,6.9282,16 -a 4 0 (15)
0, = (-6.9282 6.9282,16 J=|-z c-k -x

From equation (6) Jacobian matrix of Chen system is y X -h

achieved which is as follows:
Corresponding eigenvalues of the equilibrium poiints

-3, a O (9)  equation (14) are:
J=|g-a-z ¢ —X O - A, =-3,1,=15.3),=— 40 (16)
y X -h O, ; - A,=-28.08294,,= 0.191% 11.433
equilibrium (8) are obtained as: of index 2. Hence the fractional order Chen sysbemomes
chaotic when:
O - A4=-3,1,=204,- 32 (10)
—_ — ‘ 17
0,, -~ A,=-20.23044,,= 2.6152 13.526: 0> 2,0 |Im(4,,)  0.9803 7
Re(, ;)

From definition 1, O,, are of saddle point of index 2.

Therefore from theorem 1 fractional order Chen ayst Otherwise system is asymptotically stable. This msethat
becomes chaotic when: for q<0.9892 the fractional order Chen system is

asymptotically stablea
2. (|me, ) (11)  symPIoTeaty
q>—tan | ——— | =0.8784
g Red, ) 3.2. Design of the Controller for Fractional ordedi System
Otherwise the system is asymptotically stable. From (Matouk, 2009) the fractional order Lii systisngiven
In order to stabilize the fractional order Chenteys an by:
input signal is added into system dynamic by thieWang: 4% (18)
- = - X
e al=% doy
o - X2t gy
dqy dt?
F:(Cl‘al)x‘xz*'gy* L diz
t —
—w =Xy-hz
diz dt®
—=xy-hz
proiat

To obtain the Lichaotic behaviour, parameters in equation

A linear state feedback controller is proposedawnfigure the (18) is set to (Matouk, 2009):
input signalu as in the following form: a,=35,h=3,6= 30 (19)

u=—(g-a)x-ky (13)

wherek, is a constant gain ank| =12.7.

From equations (18) and (19) the equilibrium poiatsd
Jacobian matrix of LU system are given by:

Theorem 2. The proposed state feedback controller inol_(o’o’o) (20)
equation (13) increases the stability region ofticanal order O, =(9.4868,9.4868,30
Chen system and stabilizes the system at theirlestatD, = (-9.4868;- 9.4868,30
equilibrium points.



-a, a 0 (22)
J=|-z ¢ -Xx
y x -h

Then the corresponding eigenvalues of the equilibrpoints
in equation (20) are:

0 -4=-3,4,=304,=-35

O,; » A,=-19.37014, ,= 5.685%t 17.114!

(22)

From the definition 10, , are of the saddle point of index 2.
Thus the fractional order L system becomes chadien:

£|lmuz,3)| (23)

2.
q>—tan
Re(, ;)

] =0.7958
T

Otherwise system is asymptotically stable.

Similar to the previous section, to stabilize fingctional
order LU system an input signal is added as a clhetiin the
system dynamic which is as follows:

dix _ (y-% (24)
d%y

— =—-Xz+ + U

diz

—=xy-hz

proiat

The linear state feedback controliein the following form
stabilizes the chaotic dynamic:

u=-ky (25)

wherek is a constant gain df, =16.5.

Theorem 3. By the proposed state feedback controller i
equation (25), the stability region of fractionatder Lu
system is increased and stabilizes the systemeat stable
equilibrium points.

Proof. Despite of state feedback controller in fractiomaler
L0 system similar of equation (24) the equilibripmints and
Jacobian matrix are achieved by:

0O; =(0,0,0) (26)
0, =(6.3639,6.3639,13)5
O, =(~6.3639- 6.3639,13)5
J=|-z g-k -x
y x -hb

So the corresponding eigenvalues of the equilibqa@imts in
equation (26) are:

O - A =-3,,=135),=- 35
O, — 4,=—24.863},,= 0.181% 10.67'

(28)

Again from the definition 1,0;, are the saddle points of

index 2 so from theorem 1, fractional order LU egstis
chaotic when:

q >Etanl[
Vs

Otherwise system is asymptotically stable. This msethat

Im(A,,)| (29)

=0.9892
Re@, ;)

for g<0.9892the fractional order LU system is
asymptotically stablea

4. SIMULATION
A simulation approach has been carried out using

SIMULINK ™. Dormand-Prince solver is used to solve the
system of differential equations during the simolat
Results of unified chaotic Chen and Ll systemsshi@vn
forq=0.96,q= 0.98g= . Initial conditions of the states are

selected afl0,15,25. Simulation results show that the

simple state feedback controller stabilized thetfomal order
unified chaotic systems whilst the behaviour oféleivalent
integer one still kept chaotic. Fig. 1 shows thnt fractional
order Chen system is stabilized for=0.96and q=0.98

with state feedback controller in equation (13p.F shows
the chaotic behaviour of integer order Chen sysiespite
of using the same state feedback controller in System.
Similar result is achieved in Fig. 3 when the fiawal order
L system is stabilized by the controller for
g=0.96andq=0.98. In the same way, Fig. 4 shows the

chaotic behaviour of integer order of LU systemngsihe
same state feedback controller.

5. CONCLUSION

Mhree chaotic Lorenz, Chen and Lu systems are shown
unified by a same dynamic. Theses system will sg#pbrbe
excited when the relevant parametas accordingly
adjusted. A simple linear state feedback contraegained

to stabilize the unified chaotic systems at thetiabke
equilibrium points. The controller also increasks stability
region with respect to their integer order courdetrp
Simulation approach is given to verify the outcoride
approach signifies the performance as well as ¢habhility

of the state feedback controller.
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