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Abstract: A unified system is presented to show three chaotic dynamics of Lorenz, Chen and Lü systems 
in the same structure. Theses system will be differently distinguished when the relevant parameterα is 
accordingly tuned. This paper deals with an asymptotically stability of fractional–order unified chaotic 
systems. A simple linear state feedback controller is gained to stabilize systems. This controller will be 
shown increases the stability region with respect to their integer order systems. Simulation results are 
demonstrated for Chen and Lü fractional –order systems to illustrate the effectiveness of the proposed 
control scheme.  
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1. INTRODUCTION 

Fractional calculus is a mathematical topic with more than 
300 years old history but the application to physics and 
engineering has been reported only in the recent years. It has 
been found that the behaviour of many physical systems can 
be properly described, using the fractional order system 
theory. Heat conduction, dielectric polarization, electrode-
electrolyte polarization, electromagnetic waves, Visco-Elastic 
systems, quantum evolution of complex systems, quantitative 
finance and diffusion wave are among the known dynamical 
systems that were modelled using fractional order equations. 
In fact, real world processes generally or most likely are 
fractional order systems (Tavazoei and Haeri, 2009). 
Furthermore, fractional order controllers such as CRONE 
(Oustaloup et. al., 1996), TID (Lurie, 1994), fractional PID 
controller (Podlubny, 1999) and lead-lag compensator 
(Raynaud and Zerga Inoh, 2000) have been implemented to 
improve the performance and robustness of some closed loop 
control systems.  An application of fractional algebra is to 
model the fractional order chaotic systems. This kind of 
modelling provides more accuracy, less complexity as well as 
the possibility to increase the stability region (Tavazoei and 
Haeri, 2009).  

Chaos is a very interesting nonlinear phenomenon. High 
sensitivity to initial conditions is a main characteristic of 
chaotic systems. Accordingly, these systems are difficult for 
synchronization or control (Hosseinnia et. al., 2010). Due to 
complex behavior, and coupling, the control and stabilization 
task of chaotic nonlinear systems have been one of the major 
issues in control engineering area. In the past decade, a great 
efforts has been devoted towards the chaos control, including 
stabilization of unstable equilibrium points, and more 
generally, unstable periodic solutions. Particularly, in case of 

chaos suppression of known chaotic systems, some useful  
methods have been developed. These includes time delay 
feedback control  (Pyragas and Tamasevieius, 1993), bang–
bang control (Vincent, Yu, 1991), optimal control (Luce, 
Kernevez, 1991), intelligent control (Yeap, Ahmed, 1994), 
Adaptive control (Zeng, Singh, 1997) , etc. 

The unified chaotic system is a chaotic system which depends 
on a parameter [0,1]α ∈ . If 0 0.8α≤ < , the unified chaotic 

system reduces to the generalized Lorenz chaotic system; the 
unified chaotic system reduces to the Lü chaotic system when 

0.8α = . For0.8 1α< ≤ , the unified chaotic system reduces 
to the generalized Chen chaotic system.  

Chen (Chen and Lu, 2002) considered that the parameter of 
the two unified chaotic systems is unknown and an adaptive 
controller was used to achieve synchronization based on 
Lyapunov stability theory. Chen (Chen et. al., 2004) 
investigated the stabilization and synchronization of the 
unified chaotic system via an impulsive control method. Lu 
(Lu et. al., 2004) used linear feedback and adaptive control to 
synchronize identical unified chaotic systems with only one 
controller. Ucar (Ucar et. al., 2006) used a nonlinear active 
controller to synchronize two coupled unified chaotic systems 
with three control inputs. Wang (Wang and Liu, 2007) 
proved that the unified chaotic system is equivalent to a 
passive system and asymptotically stabilized it at equilibrium 
points. Wang (Wang and Song, 2008) studied the 
synchronization problem of two identical unified chaotic 
systems using three different methods. They used a linear 
feedback controller, a nonlinear feedback method and an 
impulsive controller to synchronize the systems. In (Zribi et. 
al., 2009) based on the sliding mode theory synchronization 
of two identical unified chaotic is discussed. In this paper, a 
linear state feedback controller stabilizes fractional order 



 
 

     

 

unified chaotic system. The state feedback controller 
increases the stability region of fractional order chaotic 
system. An advantage of the proposed controller can be seen 
when it is used to stabilize a fractional order unified chaotic 
system. Meanwhile the application on the integer order 
system will be shown failed.  

The paper is organized as follows. Section 2 includes the 
basic definition and preliminaries. State feedback controller 
is proposed to stabilize of fractional order unified chaotic 
systems in section 3. Results of numerical simulation are 
given in section 4, to illustrate the effectiveness of the 
proposed controller. The paper will be closed by a conclusion 
in section 5.  

2. PRELIMINARY DEFINITIONS  

2.1. Fractional Algebra 

Among several definitions of fractional derivatives, the 
following Caputo-type definition is more popular with 
respect the rest (Caputo, 1967). 
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where m is the first integer number larger than q.  

Definition 1. (Tavazoei and Haeri, 2008) A saddle point of 
index 2 is a saddle point with one stable eigenvalue and two 
unstable ones. 

Definition 2. (Tavazoei and Haeri, 2008) Assume that a 3-D 
fractional order chaotic system of ( )x f x=ɺ displays a chaotic 

attractor. For every scroll existing in the chaotic attractor, this 
system has a saddle point of index 2 encircled by its 
respective scroll.    

Theorem 1. (Tavazoei and Haeri, 2007) Assume that a 3-D 
chaotic system ( )x f x=ɺ displays a chaotic attractor with n 

scrolls. Suppose Λ is a set of unstable eigenvalues of these n 
saddle points. A necessary condition for fractional system 

( )qD x f x= to exhibit an n-scroll chaotic attractor, similar to 

the chaotic attractor of system ( )x f x=ɺ , to keep the 

eigenvalues λ ∈ Λ in the unstable region, satisfies: 

1 Im( )2
tan ,

Re( )
q

λ
λ

π λ
−  

> ∀ ∈ Λ 
 

 
(2) 

Otherwise, at least one of these equilibriums becomes 
asymptotically stable and then attracts the nearby trajectories. 

2.2. Unified Chaotic System 

In (Lü et. al., 2002) considered a kind of chaotic system 
which describes a class of unified form which is as follows: 
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where , ,x y zare state variables and [ ]0,1α ∈  is parameter of 

system. Lü et. al. (Lü et. al., 2002) calls (3) as unified chaotic 
system because system (3) is chaotic for any[ ]0,1α ∈ . 

When0 0.8α≤ < , system (3) is called as the generalized 
Lorenz chaotic system. For 0.8α = , it is called Lü chaotic 
system. Similarly it is called generalized Chen chaotic system 
when0.8 1α< ≤ . Besides, let us introduce the fractional 
version of equation (4). Standard derivatives of equation (3) 
are replaced by the following fractional derivatives: 
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where q with 0 1q< ≤ is the fractional order. Chaotic 

behaviour of fractional order unified system of Chen, Lü and 
Lorenz-Like for 0.9,0.95,0.99q=  are shown in (Matouk, 

2009). From equation (4) the generalised scheme of fractional 
order unified chaotic system can be give as follows: 
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3. STATE FEEDBACK CONTROL 

3.1. Design of the Controller for Fractional order Chen 
System  

From (Matouk, 2009) the fractional order Chen system is 
given as follows: 
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To obtain the Chen chaotic behaviour, parameters in equation 
(6) is set to (Matouk, 2009): 

1 1 140 , 3 , 28a b c= = =  (7) 

From equations (6) and (7) the equilibrium points of Chen 
system are given by:  

1

2

3

(0,0,0)

(6.9282,6.9282,16)

( 6.9282, 6.9282,16)

O

O

O

=
=
= − −
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From equation (6) Jacobian matrix of Chen system is 
achieved which is as follows: 

1 1

1 1 1

1

0a a

J c a z c x

y x b

− 
 = − − −
 

−  

 

(9) 

Accordingly, the corresponding eigenvalues of the 
equilibrium (8) are obtained as: 

1 1 2 3

2,3 1 2,3

3, 20, 32

20.2304, 2.6152 13.5268

O

O j

λ λ λ
λ λ

→ = − = −
→ = − = ±

 
(10) 

From definition 1, 2,3O  are of saddle point of index 2. 

Therefore from theorem 1 fractional order Chen system 
becomes chaotic when: 
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Otherwise the system is asymptotically stable.  

In order to stabilize the fractional order Chen system, an 
input signal is added into system dynamic by the following: 
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A linear state feedback controller is proposed to configure the 
input signal u as in the following form: 

1 1 1( )u c a x k y= − − −  (13) 

where 1k is a constant gain and 1 12.7k = . 

Theorem 2. The proposed state feedback controller in 
equation (13) increases the stability region of fractional order 
Chen system and stabilizes the system at their stable 
equilibrium points. 

. 

Proof. Despite of the applied state feedback controller in 
fractional order Chen system the equilibrium points and the 
Jacobian matrix are obtained: 
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Corresponding eigenvalues of the equilibrium points in 
equation (14) are: 

1 1 2 3

2,3 1 2,3

3, 15.3, 40

28.0829, 0.1915 11.4331

O

O j

λ λ λ
λ λ

′ → = − = =−
′ → = − = ±

 
(16) 

Similarly, from the definition 1, 2,3O′  are of the saddle point 

of index 2. Hence the fractional order Chen system becomes 
chaotic when: 
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(17) 

Otherwise system is asymptotically stable. This means that 
for 0.9893q <  the fractional order Chen system is 

asymptotically stable. ■ 

3.2. Design of the Controller for Fractional order Lü System  

From (Matouk, 2009) the fractional order Lü system is given 
by: 
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To obtain the Lü chaotic behaviour, parameters in equation 
(18) is set to (Matouk, 2009): 

1 1 135 , 3 , 30a b c= = =  (19) 

From equations (18) and (19) the equilibrium points and 
Jacobian matrix of Lü system are given by: 
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(9.4868,9.4868,30)
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Then the corresponding eigenvalues of the equilibrium points 
in equation (20) are: 

1 1 2 3

2,3 1 2,3

3, 30, 35

19.3701, 5.6851 17.1149

O
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From the definition 1, 2,3O  are of the saddle point of index 2. 

Thus the fractional order Lü system becomes chaotic when: 
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Otherwise system is asymptotically stable. 

Similar to the previous section,  to stabilize the fractional 
order Lü system an input signal is added as a controller in the 
system dynamic which is as follows: 
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The linear state feedback controller u in the following form 
stabilizes the chaotic dynamic: 

1u k y= −  (25) 

where 1k is a constant gain of 1 16.5k = . 

Theorem 3. By the proposed state feedback controller in 
equation (25), the stability region of fractional order Lü 
system is increased and stabilizes the system at their stable 
equilibrium points. 

Proof. Despite of state feedback controller in fractional order 
Lü system similar of equation (24) the equilibrium points and 
Jacobian matrix are achieved by: 
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So the corresponding eigenvalues of the equilibrium points in 
equation (26) are: 

1 1 2 3

2,3 1 2,3

3, 13.5, 35

24.863, 0.1815 10.6767

O
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(28) 

Again from the definition 1, 2,3O′  are the saddle points of 

index 2 so from theorem 1, fractional order Lü system is 
chaotic when: 
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Otherwise system is asymptotically stable. This means that 
for 0.9892q < the fractional order Lü system is 

asymptotically stable. ■ 

4. SIMULATION 

A simulation approach has been carried out using 
SIMULINK TM. Dormand-Prince solver is used to solve the 
system of differential equations during the simulation. 
Results of unified chaotic Chen and Lü systems are shown 
for 0.96, 0.98, 1q q q= = = . Initial conditions of the states are 

selected as( )10,15,25 . Simulation results show that the 

simple state feedback controller stabilized the fractional order 
unified chaotic systems whilst the behaviour of the equivalent 
integer one still kept chaotic. Fig. 1 shows that the fractional 
order Chen system is stabilized for 0.96q = and 0.98q =  

with state feedback controller in equation (13). Fig. 2 shows 
the chaotic behaviour of integer order Chen system, despite 
of using the same state feedback controller in the system. 
Similar result is achieved in Fig. 3 when the fractional order 
Lü system is stabilized by the controller for 

0.96q = and 0.98q = . In the same way, Fig. 4 shows the 

chaotic behaviour of integer order of Lü system using the 
same state feedback controller.   

5. CONCLUSION 

Three chaotic Lorenz, Chen and Lü systems are shown 
unified by a same dynamic. Theses system will separately be 
excited when the relevant parameterα is accordingly 
adjusted. A simple linear state feedback controller is gained 
to stabilize the unified chaotic systems at their stable 
equilibrium points. The controller also increases the stability 
region with respect to their integer order counterpart. 
Simulation approach is given to verify the outcome. The 
approach signifies the performance as well as the reliability 
of the state feedback controller.  
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