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1. INTRODUCTION 

The exponential function is the fundamental tool for dealing 
with integer order systems, but when entering into the context 
of the fractional systems its role is assumed by the power 
function. While the exponential function is connected with the 
short memory concept, the power function is characterized by a 
long memory, or as it is frequently called, a long range 
dependence. Although the usual tool for studying linear 
systems is the Laplace transform (LT), there are situations 
where we cannot use the LT, or where the information it gives 
is not required. In these situations the Fourier transform (FT) 
can be a valid alternative. However, the FT may lead in some 
situations to conflicting or inconsistent results, mainly when 
working in the context of Distributions – generalised functions 
(Ferreira, 1997, Hoskins and Pinto, 1994; Silva, 1989). In these 
cases, it is sometimes difficult to find the FT for some power 
functions, and unless care is taken, it is also difficult to find the 
correct result.  In this paper we shall be working in the context 
of the axiomatic theory of distributions (Ferreira, 1997) due to 
its simplicity and engineering “flavour”.  

In this paper, we present a complete and correct table of 
expressions for the FT of integer and fractional order power 
functions. In the section 2, we present the most general 
formulations of the fractional derivatives. These operators, 
when looked from the point of view of the linear systems, have 
impulse responses that are power functions: either causal or 
acausal. In sections 3 we study the causal case and in section 4 
the acausal case. Finally, we will present some conclusions. A 
table with all the transforms is in the appendix. 

2. THE FRACTIONAL DERIVATIVES 

2.1 Definitions 

In this paper we deal with the multi-valued expression zα. As is 
well known, in order to define a power function of a complex 
variable we have to fix a branch cut line and choose a branch 
(Riemann surface). It is a common procedure to choose the 
negative real half-axis as branch cut line. In what follows we 

will assume that we can adopt the principal branch and assume 
that the obtained function is continuous above the branch cut 
line. Using this convention, we will write (-1)α = ejαπ. In 
addition, in all the following we shall be working with 
functions defined in the whole real number line. 

The general formulation of the incremental ratio valid for any 
order, real or complex, leads to the definition of the fractional 
derivative as: 

D
α
θf(z)  = e-jθα lim

|h|→0
 
∑

k = 0

∞
 (−1)

k
 ( )αk  f(z − kh)

 |h|
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where h = |h|ejθ is a complex number, with θ ∈ (-π,π] and θ ≠ 
π/2. The above definition of the fractional derivative as a 
general incremental ratio generalizes the classical Grünwald-
Letnikov fractional derivative. Here, we will assume that h is 
real and that θ = 0, or θ = π. If θ = 0, only the present and past 
values are being used, while, if θ = π, only the present and 
future values are used. This means that if we look at (1) as a 
linear system, the first case is causal, while the second is anti-
causal (Ortigueira, 2006a,b,2008) Usually, if θ = 0, we call (1) 
the forward Grünwald-Letnikov derivative, as shown below:  
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We know that considering this derivative as a system, we can 
show (Ortigueira, 2006a) that the transfer function is sα, for 
Re(s) > 0 and the frequency response is given by Ortigueira and 
Trujillo, (2009) as: 

 

(jω)α = |ω|α 

ejαπ/2     if ω>0

   
e-jαπ/2    if ω<0

  (3) 

 



     

The corresponding impulse response will be presented later.  

Another derivative formulation leads to the centred derivatives 
(Ortigueira, 2006b, 2008). Assuming again that α > -1, we have 

D
α
c1

f(t)= lim
h→0

Γ(α+1)
hα  ∑

-∞

+∞
  

(-1)k

Γ(α/2-k+1) Γ(α/2+k+1)f(t-kh) (4) 

that is, (4) represents the type 1 fractional central derivative. 
The type 2 fractional central derivative is given by 

D
α
c2

 f(t)= lim
h→0

Γ(α+1)
hα  ∑

-∞

+∞
  

(-1)k f(t-kh+h/2)
Γ[(α+1)/2-k+1] Γ[(α-1)/2+k+1]  (5) 

 
where α ≠ 0. 
 
The linear systems defined by these derivatives do not have 
transfer functions, but they have frequency responses given by  

HD1(ω) = |ω|α (6) 

and 

HD2(ω) = -j |ω|αsgn(ω) (7) 
respectively (Ortigueira, 2006b, 2008).  

2.2 The impulse responses 

The impulse responses corresponding to the above introduced 
frequency responses are given respectively by: 

h(t) =  
t-α-1u(t)
Γ(-α)   (8) 

for the causal Grünwald-Letnikov derivative (here, u(t) is the 
Heaviside unit step), and  

hD1(t) =   
1

2Γ(-α)cos(απ/2) |t|
-α-1
    (9) 

and 

hD2(t) =  - 
sgn(t)

 2Γ(-α)sin(απ/2) |t|
-α-1
    (10) 

for the centred acausal derivatives. As shown in (Ortigueira and 
Trujillo, 2009) we have 

FT[
t-α-1u(t)
Γ(-α)  ] =  |ω|αejαπ/2sgn(ω) (11) 

where α is not a positive integer. We will write merely 

FT[
t-α-1u(t)
Γ(-α)  ] = (jω)α (12) 

With this, we are dealing with a multi-valued expression zα. As 
is the common procedure, we choose the negative real half-axis 
as the branch cut line.  

In what follows we will assume that we adopt the principal 
branch and assume that the obtained function is continuous 
above the branch cut line. This justifies the above expression 
and allows us to write (-1)α = ejαπ. To obtain the expressions 
(11) and (12) we can compute the Laplace transform of (4) for 

α < 0 as shown by Henrici (1991). On making the replacement, 
s→jω we migrate from the Laplace transform to the Fourier 
transform. We define the Fourier transform (FT) by 

F(ω) = FT[f(t)] = ⌡⌠

-∞

∞
  f(t) e-jωt

 dt  (13) 

After we use the generalised integer order derivative as we will 
explain in the next section. With this we can conclude that (6) 
is valid for any real excepting the positive integers. In this case, 
the inverse Fourier transform of  (jω)n is the nth order 
derivative of the delta Dirac function. We can use (12) to obtain 
the Fourier transforms of (9) and (10). This can be done in two 
ways: 

• By correlation of two powers as in (12) but with α/2. 

• By adding (12) and its time reversed version.   

We will follow the second procedure. We have  

|t|-α-1
 

Γ(-α) = 
t-α-1u(t)
Γ(-α)  + 

(-t)-α-1u(-t)
Γ(-α)   (14) 

that with (11) leads to 

FT





|t|-α-1

 
 2cos(απ/2)Γ(-α)  = | ω |α  (15) 

Similarly, with  

|t|-α-1
 

Γ(-α) = 
t-α-1u(t)
Γ(-α)  - 

(-t)-α-1u(-t)
Γ(-α)   (16) 

we obtain  

FT





|t|-α-1

 sgn(t)
 2Γ(-α)sin(απ/2) = j| ω |α sgn(ω) (17) 

In both (15) and (17) α is non-positive integer real. We can 
rewrite them as 

FT[ ]|t|-α-1
 = 2Γ(-α)cos(απ/2)| ω |α (18) 

and 

FT[ ]|t|-α-1
 sgn(t) = 2jΓ(-α)sin(απ/2)| ω |α sgn(ω) (19) 

But the reflection formula of the gamma function allows us to 
obtain: 

1
2Γ(-α)cos(απ/2) =  - 

Γ(α+1) sin(απ/2)
π  (20) 

and 

1
2Γ(-α)sin(απ/2) =  - 

Γ(α+1) cos(απ/2)
π  (21) 

 
Letting n be a positive integer, leads to 



     

FT[ ]|t|-2n
  = 

(-1)nπ
(2n-1)!| ω |2n-1 (22) 

and to 

FT[ ]|t|-2n-1
 sgn(t) = -j

(-1)nπ
(2n)! | ω |2nsgn(ω) (23) 

As |t|-2n = t-2n, |t|-2n-1sgn(t) = t-2n-1, we can write: 

FT[ ]t-2n
 = 

(-1)nπ
(2n-1)!| ω |2n-1 (24) 

and 

FT[ ]t-2n-1
 = j

(-1)nπ
(2n)! | ω |2nsgn(ω) (25) 

2.3 The generalised functions and their Fourier transforms 

We choose to follow the formalism presented in the Axiomatic 
Theory of Generalised Functions (Silva, 1989, Ferreira, 1997). 
This approach defines a generalised function or distribution as 
an integer order derivative of a continuous function. Let g(t) be 
a continuous function defined in R and f(t) be a function such 
that 

f(t) = DNg(t)  (26) 
 
We say that f(t) is a distribution. For example,  
 
δ(t) = D2[tu(t)] = 1/2D2|t| (27) 
 
will lead to: 

δ(t) = Du(t) = 1/2D[sgn(t)]  (28) 
 
where sgn(t) is the signum function. It can be proven that, if f(t) 
is a tempered distribution(1), then its FT exists and it is also a 
tempered GF. In the following we shall be working with 
tempered distributions. 

 

3. THE FOURIER TRANSFORMS OF ACAUSAL 
POWER FUNCTIONS 

3.1 Positive integer order powers 

We start by considering the acausal case, due to the symmetry 
that allows us to test the coherence of the results.  

As we wrote above 

δ(t) = ½ D[sgn(t)]  (29) 

                                                 
1 a generalised function ϕ is said to be tempered or of polynomial type 

if and only if  ∃ α ∈ R such that 
ϕ(t)
tα

   is bounded when t→∞. 

We prefer this approach because it maintains the even/odd  
relationship between a function and its derivative. Using the 
well known properties of the Fourier transform and those of the 
δ(t), we have 

 FT[δ(t)] =1   (30) 
and, if S(ω) is the FT of the signum function, we have 

 jω S(ω) = 1  
This equation has infinite solutions with the general format 

S(ω) = 
2
jω + C δ(ω)  (31) 

As sgn(t) is odd, S(ω) must be odd. Then C=0 and 

S(ω) = 
2
jω  (32) 

The product t.sgn(t) is well defined, because t is an ordinary 
continuous function. Then 

FT[t sgn(t)] = j 
d

dω S(ω) = -
2
ω2 (33) 

Repeating the process, we have 

FT[t2sgn(t)] = 2j
2
ω3 ; FT[t3sgn(t)] = - 2

6
ω4  … 

If n is an odd integer, n → 2n+1 (n=1,2, ...), t2n+1sgn(t) = | t |2n+1 
and we have: 

FT[| t |2n+1] = -2
(2n+1)!
ω2n+2   (34) 

If n is an even integer, n → 2n (n=1,2, ...), we have: 

FT[t2nsgn(t)] = 2j
(2n)!
ω2n+1  (35) 

These two expressions state coherent results, since, if we derive 
one from one set, we obtain another from the other. 

As  
FT[1] = 2πδ(ω)  (36) 
and 

FT[tkf(t)] = jk F(k)(ω)  (37) 
we obtain  

FT[ tn ] = 2πjn δ(n)(ω)  (38) 
In particular 

FT[ t2n ] = FT[ | t |2n ] = 2π(-1)n δ(2n)(ω)  (39) 
By taking the derivative of the left hand side, we obtain: 

FT[ (2n)| t |2n-1sgn(t) ] = 2π(-1)n jω.δ(2n)(ω)  (40) 
But (Ferreira, 1997)  

ωk.δ(m)(ω) = 


0     if k>m

       

(-1)k m!
(m.k)!δ

(m-k)
 (ω)    if k≤m

 



     

With k=1 and m=2n, we obtain 

ω.δ(2n)(ω) = - δ(2n-1)(ω) 

and 

FT[ | t |2n+1sgn(t) ] = 2π(-1)n+1 jδ(2n+1)(ω)  (41) 

3.2 Odd negative integer orders 

We first are going obtain the FT of odd integer negative 
powers. To see the problem we have to face, we are going to 
compute the FT of |t|-1. We have 

FT[t
1
|t|]  = FT[sgn(t)] = 

2
jω 

But  

FT[t
1
|t|]  = j 

d
dω FT[

1
|t|] 

We have 

j 
d

dω FT[
1
|t|] = 

2
jω 

leading to 

FT[
1
|t|] = -2 log| ω | + C 

where C is any real constant. We are going to consider the 
situation with all the generality. We can compute the derivative 
of both sides of the relation (19) relative to α. We obtain 

FT[ ]-|t|-α-1
 log|t|sgn(t) = 2jΓ(-α)sin(απ/2)|ω|αlog|ω| sgn(ω)+ 

+ 2[-Γ(-α)sin(απ/2) + Γ(-α)cos(απ/2)π/2] |ω|αsgn(ω)   (42) 
with α=-1, we obtain 

FT[ ]log|t|sgn(t) = -2jω-1[log|ω| + γ]  (43) 
where γ = - Γ´(1) is the Euler-Mascheroni constant. The finite 
part of the derivative of the first member in (43) gives us: 

FT


1

|t| = 2[log|ω| + γ]  (44) 

This equation is in agreement with the result obtained above. 
Continuing the derivative computation, we obtain successively: 

FT



1

|t|2sgn(t) = - 2jω[log|ω| + γ], 

 
FT



2

|t|3 = 2(jω)2[log|ω| + γ], 

 
FT



6

|t|4sgn(t) = - 2(jω)3[log|ω| + γ], 

 
FT



24

|t|5 = 2(jω)4[log|ω| + γ], 

which allows us to write: 

FT[ ]|t|-2n-1 = 
2(-1)nω2n

(2n)!  [log|ω| + γ]  (45) 

and 

FT[ ]|t|-2nsgn(t) = 
2j(-1)n-1ω2n-1

(2n)!  [log|ω| + γ]  (46) 

To finish this problem, we need to compute the FT of | t |-2n and 
of | t |-2n-1sgn(t). To do this, we remark that  

| t |-2n = t-2n 

and 

| t |-2n-1sgn(t) = t-2n-1 

The corresponding FT are in (24) and (25) and the duality 
property of the FT. We conclude that the “abnormal” transform 
appears only in the situations stated in (45) and (46). 

 

4. THE FOURIER TRANSFORMS OF CAUSAL POWER 
FUNCTIONS 

4.1 Positive powers 

Consider again the Fourier transform of the causal 
differintegrator given by (11). That expression is valid for any 
non-negative integer real, α ∈ R-Z-. In fact, for positive integer 
orders we obtain the repeated integration, while for negative 
integers we obtain the normal derivatives that have integer 
order derivatives of δ(t) as impulse responses. So, we intend to 
obtain the Fourier transform of  tnu(t), for n ∈ Z. For positive n, 
we do not have great difficulties, because it is enough to start 
from the FT of the Heaviside unit step, multiply it by tn and use 
a well known property of the FT. 

We start from the relation 
δ(t) = D[u(t)]  (47) 
and use the fact that the equation  

jωU(ω)=1 

has infinite solutions given by 

U(ω) = 
1
jω + Aδ(ω)  

where A must be non null since  u(t) is not even neither odd; so, 
its FT must be complex. To be coherent with equation (31) 
above, A must be equal to π. To see why, we must remark that  

u(t) = 2sgn(t) -1 

and the FT of f(t) =1 is 2πδ(ω). Thus 

FT[u(t)] = 
1
jω + πδ(ω)  (48) 

Now, it is a simple task to write 



     

FT[tnu(t)] = (-j)n-1 1
ωn+1 + π(-j)nδ(n)(ω)  (49) 

if n is a positive integer. If n is negative, we must find another 
way.  

To obtain the corresponding result for negative powers, we 
return back to equation (46). As sgn(t) = 2u(t) -1, we have: 

|t|-2nsgn(t) = 2 t-2nu(t) - |t|-2n 

and 

2 t-2nu(t) =  |t|-2n + |t|-2nsgn(t) =  t-2n + t-2nsgn(t) 

Thus 

FT[t-2nu(t)] = 
(-1)nπ

2(2n-1)!| ω |2n-1 +  
j(-1)n-1ω2n-1

(2n)!  [log|ω| + γ] (50) 

Similarly,  

2 t-2n-1u(t) =  |t|-2n-1 + |t|-2n-1sgn(t) =  t-2n-1sgn(t) + t-2n-1 

and 

FT[t-2n-1u(t)] = 
(-1)nω2n

(2n)!  [log|ω| + γ] - j
(-1)nπ
(2n)! | ω |2nsgn(ω) (51) 

Let us return back to equation (11) and rewrite it in the format: 

FT[t-α-1u(t)] =  Γ(-α) |ω|αejαπ/2sgn(ω) (52) 
and compute the order one derivative relatively to α in both 
sides of the equation to obtain 

FT[-t-α-1u(t)log(t)] =  -Γ’(-α) |ω|αejαπ/2sgn(ω) + 

 Γ(-α) |ω|α log(|ω|)ejαπ/2sgn(ω)  

+ Γ(-α) |ω|αejαπ/2sgn(ω) jαπδ(ω) (53) 
With α=-1, we obtain 

FT[log(t)u(t)] =  -jΓ’(1) |ω|-1sgn(ω) -j |ω|-1log(|ω|) + 

                     + π|ω|-1sgn(ω)δ(ω) (54) 
and 

FT[log(t)u(t)] = πω-1δ(ω) + j|ω|-1[γsgn(ω) - log(|ω|)] (55) 
But (Hoskins and Pinto, 1994) 

ω-1δ(ω) = – ½δ(1)(ω) (56) 
that leads to  

FT[log(t)u(t)] = – ½δ(1)(ω) + j|ω|-1[γsgn(ω) - log(|ω|)] (57) 
a somewhat strange distribution. 

 

5. AN APPLICATION TO THE ALPHA STABLE 
DISTRIBUTION 

We are going to consider the symmetric alpha stable 
distribution. This function is defined through its characteristic 
function 

Φ(ω) = e
-|ω|α
    (58) 

To obtain the corresponding probability density, we must 
compute the inverse Fourier transform of (46). There are two 
series that represent the probability density for α < 1 and for the 
case 1 ≤ α ≤ 2. We are going to use the above results to obtain 
one of them. We start with the series obtained from the 
McLaurin series of the exponential. 

Φ(ω) = e
-|ω|α
  = ∑

0

∞
  
(-1)n

n!  |ω|nα  (59) 

Now, we are going to invert the series term by term.  In order to 
complete the inversion, we are going to use the above results. 
We must be careful with the terms corresponding to integer 
values of nα. For the cases with nα not integer, we have no 
problems. We only have to use the duality: 

FT´1[ |ω|nα ] = -
1
πΓ(nα+1)sin(nαπ/2) | t |-nα-1

    (60) 

In nα is an even positive integer, the inverse is a derivative of 
the delta and so it is zero for t≠0. Thus, the corresponding terms 
will be discarded. If nα is an odd positive integer, we write the 
condition, nα = 2k+1 and use (34) to obtain: 

 FT-1[ |ω|2k+1 ] = -
1
πΓ(2k+2)| t |-2k-2

    (61) 

So, the inverse function is given by: 

ϕ(t) = -
1
π∑

0

∞
  
(-1)n

n!  Γ(nα+1)sin(nαπ/2) | t |-nα-1
   (62) 

This series was presented by Uchaikin and Zolotarev (1999) 
that pointed out that it is convergent for 0 < α < 1, but nothing 
is said about the even order terms. In practice, the convergence 
of this series is very difficult as soon as t approaches the origin, 
becoming divergent. With a similar procedure it is a simple task 
to obtain the inverse of the general case: 

Φ(ω) = e
-γ|ω|αejρπ/2sgn

(ω)

    (63) 

but we do not have the space to complete this case here. 
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7. CONCLUSIONS 

 
The permanent presence of the power functions in 
fractional calculus motivated us to compute their Fourier 



     

transforms. This was done with the help of the 
distribution theory. We deduced all the transforms. Some 
of the obtained results are not available in current 
literature or are in contradiction with it. A table with all 
the transforms was constructed.  
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APPENDIX – TABLE OF POWERS AND THEIR FOURIER 

TRANSFORMS 

 
Function Fourier Transform 

t-α-1u(t)
Γ(-α)   |ω|α.ejαπ/2sgn(ω) 

t2n = | t |2n 2π(-1)n δ(2n)(ω) 
| t |2n+1sgn(t) 2π(-1)n+1 jδ(2n+1)(ω) 
| t |α 
α≠-2N,   N∈N0 

-2Γ(α+1)sin(απ/2) | ω |-α-1
   

| t |α sgn(t) 
α≠-2N-1,   
N∈N0 

-j2Γ(α+1)cos(απ/2) | ω |-α-1
  sgn(ω) 

 

|t|-α-1
   2Γ(-α)cos(απ/2)| ω |α 

|t|-α-1
 sgn(t) 2jΓ(-α)sin(απ/2)| ω |α sgn(ω) 

| t |2n+1 -2
(2n+1)!
ω2n+2  

| t |2n sgn(t) 2j
(2n)!
ω2n+1 

| t |-2n  = t-2n π
(-1)n |ω|2n-1

 (2n-1)!  

| t |-2nsgn(t) = t-

2n-1 -πj
(-1)n ω2nsgn(ω)

 (2n)!  

| t |-2n-1 
2(-1)nω2n

(2n)!  [log|ω| + γ] 

FT[ ]|t|-2n-1sgn(t)  j
(-1)nπ
(2n)! | ω |2nsgn(ω) 

t-2nu(t) 
(-1)nπ

2(2n-1)!| ω |2n-1 +  
j(-1)n-1ω2n-1

(2n)!  [log|ω| + γ] 

t-2n-1u(t) 
(-1)nω2n

(2n)!  [log|ω| + γ] - j
(-1)nπ
(2n)! | ω |2nsgn(ω) 

log(t)u(t) – ½.δ’(ω) + j|ω|-1 [γ sgn(ω) - log(|ω|)] 



 
 

     

 

 


