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University, 06530, Ankara, Turkey; On leave of absence from Institute
of Space Sciences, P. O. Box, MG-23, R 76900, Magurele–Bucharest,
Romania (e-mails: dumitru@cancaya.edu.tr, baleanu@venus.nipne.ro).

∗∗ Science Department, University ”Al. I. Cuza” Iaşi, 54, Lascar
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Abstract: We briefly review our recent results on the geometry of nonholonomic manifolds and
Lagrange–Finsler spaces and fractional calculus with Caputo derivatives. Such constructions are
used for elaborating analogous models of fractional gravity and fractional Lagrange mechanics.

Keywords: fractional calculus, fractional geometry, analogous models, fractional gravity,
fractional Lagrange–Finsler space.

1. INTRODUCTION

We can construct analogous fractional models of geome-
tries and physical theories in explicit form if we use frac-
tional derivatives resulting in zero for actions on constants
(for instance, for the Caputo fractional derivative). This
is important for elaborating geometric models of theories
with fractional calculus even (performing corresponding
nonholonomic deformations) we may prefer to work with
another type of fractional derivatives.

In this paper, we outline some key constructions for analo-
gous classical and quantum fractional theories (1; 2; 3; 4; 5;
6) when methods of nonholonomic and Lagrange–Finsler
geometry are generalized to fractional dimensions. 1

An important consequence of such geometric approaches is
that using analogous and bi–Hamilton models (see integer
dimension constructions (7; 9; 10)) and related solitonic
systems we can study analytically and numerically, as
well to try to construct some analogous mechanical and
gravitational systems, with the aim to mimic a nonlin-
ear/fractional nonholonomic dynamics/evolution and even
to provide certain schemes of quantization, like in the
”fractional” Fedosov approach (4; 8).

This work is organized in the form: In section 2, we re-
member the most important formulas on Caputo fractional
derivatives and nonlinear connections. Section 3 is de-
voted to fractional Lagrange–Finsler geometries. There are
presented the main constructions for analogous fractional
gravity in section 4.

1 we recommend readers to consult in advance the above cited
papers on details, notation conventions and bibliography

2. CAPUTO FRACTIONAL DERIVATIVES AND
N–CONNECTIONS

We summarize some important formulas on fractional
calculus for nonholonomic manifold elaborated in Refs.
(1; 2; 3; 5). Our geometric arena consists from an abstract
fractional manifold αV (we shall use also the term
”fractional space” as an equivalent one enabled with
certain fundamental geometric structures) with prescribed
nonholonomic distribution modeling both the fractional
calculus and the non–integrable dynamics of interactions.

The fractional left, respectively, right Caputo derivatives
are denoted in the form

1x
α∂xf(x) :=

x∫
1x

(x− x′)s−α−1
(

∂
∂x′

)s
f(x′)dx′

Γ(s− α)
; (1)

x
α∂

2xf(x) :=
1

Γ(s− α)

2x∫

x

(x′ − x)s−α−1

(
− ∂

∂x′

)s

×

f(x′)dx′ .

Using such operators, we can construct the fractional
absolute differential αd := (dxj)α

0
α∂j when αdxj =

(dxj)α (xj)1−α

Γ(2−α) , where we consider 1x
i = 0.

We denote a fractional tangent bundle in the form αTM
for α ∈ (0, 1), associated to a manifold M of necessary
smooth class and integer dim M = n. 2 Locally, both
the integer and fractional local coordinates are written
in the form uβ = (xj , ya). A fractional frame basis
αeβ = eβ′

β(uβ) α∂β′ on αTM is connected via a vierlbein

transform eβ′

β(uβ) with a fractional local coordinate basis
2 The symbol T is underlined in order to emphasize that we shall
associate the approach to a fractional Caputo derivative.



α∂β′ =
(

α∂j′ =
1xj′

α∂j′ ,
α∂b′ =

1yb′
α∂b′

)
, (2)

for j′ = 1, 2, ..., n and b′ = n + 1, n + 2, ..., n + n. The
fractional co–bases are written αe β = e β

β′ (uβ) αduβ′ ,
where the fractional local coordinate co–basis is

αduβ′ =
(
(dxi′)α, (dya′)α

)
. (3)

It is possible to define a nonlinear connection (N–
connection) αN for a fractional space αV by a non-
holonomic distribution (Whitney sum) with conventional
h– and v–subspaces, h αV and v αV,

αT αV = h αV⊕v αV. (4)

Locally, such a fractional N–connection is characterized by
its local coefficients αN = { αNa

i }, when
αN= αNa

i (u)(dxi)α ⊗ α∂a.

On αV, it is convenient to work with N–adapted fractional
(co) frames,

αeβ =
[

αej = α∂j − αNa
j

α∂a, αeb = α∂b

]
, (5)

αeβ = [ αej = (dxj)α, αeb = (dyb)α + αN b
k(dxk)α].(6)

A fractional metric structure (d–metric) αg = { αgαβ} =
[ αgkj ,

αgcb] on αV can be represented in different
equivalent forms,

αg = αgγβ(u)(duγ)α ⊗ (duβ)α (7)

= αgkj(x, y) αek ⊗ αej + αgcb(x, y) αec ⊗ αeb

= ηk′j′
αek′ ⊗ αej′ + ηc′b′

αec′ ⊗ αeb′ ,

where matrices ηk′j′ = diag[±1,±1, ...,±1] and ηa′b′ =
diag[±1,±1, ...,±1], for the signature of a ”prime” space-
time V, are obtained by frame transforms ηk′j′ =
ek

k′ ej
j′

αgkj and ηa′b′ = ea
a′ eb

b′
αgab.

We can adapt geometric objects on αV with respect
to a given N–connection structure αN, calling them as
distinguished objects (d–objects). For instance, a distin-
guished connection (d–connection) αD on αV is defined
as a linear connection preserving under parallel transports
the Whitney sum (4). There is an associated N–adapted
differential 1–form

αΓτ
β = αΓτ

βγ
αeγ , (8)

parametrizing the coefficients (with respect to (6) and (5))
in the form αΓγ

τβ =
(

αLi
jk, αLa

bk, αCi
jc,

αCa
bc

)
.

The absolute fractional differential αd = 1x
αdx+ 1y

αdy

acts on fractional differential forms in N–adapted form.
This is a fractional distinguished operator, d–operator,
when the value αd := αeβ αeβ splits into exterior h- and
v–derivatives when

1x
αdx := (dxi)α

1x
α∂i = αej αej (9)

and

1y
αdy := (dya)α

1x
α∂a = αeb αeb. (10)

Using such differentials, we can compute in explicit form
the torsion and curvature (as fractional two d–forms

derived for (8)) of a fractional d–connection αD =
{ αΓτ

βγ},

αT τ = αD αeτ = αd αeτ + αΓτ
β ∧ αeβ and (11)

αRτ
β = αD αΓτ

β

= αd αΓτ
β − αΓγ

β ∧ αΓτ
γ = αRτ

βγδ
αeγ ∧ αeδ.

Contracting respectively the indices, we can compute the
fractional Ricci tensor αRic = { αRαβ = αRτ

αβτ} with
components

αRij = αRk
ijk, αRia = − αRk

ika,

αRai = αRb
aib,

αRab = αRc
abc (12)

and the scalar curvature of fractional d–connection αD,

α
s R = αgτβ αRτβ = αR + αS,
αR = αgij αRij ,

αS = αgab αRab, (13)

with αgτβ being the inverse coefficients to a d–metric (7).

The Einstein tensor of any metric compatible αD, when
αDτ

αgτβ = 0, is defined αEns = { αGαβ}, where

αGαβ := αRαβ − 1
2

αgαβ
α
s R. (14)

The regular fractional mechanics defined by a fractional
Lagrangian αL can be equivalently encoded into canonical
geometric data ( L

αN, L
αg, α

c D), where we put the
label L in order to emphasize that such geometric objects
are induced by a fractional Lagrangian as we provided in
(1; 2; 3; 5). We also note that it is possible to ”arrange” on
αV such nonholonomic distributions when a d–connection
0

αD = { α
0 Γ̃γ′

α′β′} is described by constant matrix
coefficients, see details in (9; 10), for integer dimensions,
and (5), for fractional dimensions.

3. FRACTIONAL LAGRANGE–FINSLER
GEOMETRY

A Lagrange space Ln = (M, L), of integer dimension n, is
defined by a Lagrange fundamental function L(x, y), i.e. a
regular real function L : TM → R, for which the Hessian
Lgij = (1/2)∂2L/∂yi∂yj is not degenerate.

We say that a Lagrange space Ln is a Finsler space Fn if
and only if its fundamental function L is positive and two
homogeneous with respect to variables yi, i.e. L = F 2. For
simplicity, we shall work with Lagrange spaces and their
fractional generalizations, considering the Finsler ones to
consist of a more particular, homogeneous, subclass.

Definition: A (target) fractional Lagrange space αLn =
( αM, αL) of fractional dimension α ∈ (0, 1), for a regular
real function αL : αTM → R, when the fractional Hessian
is

L
αgij =

1
4

(
α∂i

α∂j + α∂j
α∂i

)
αL 6= 0. (15)



In our further constructions, we shall use the coefficients
L

αgijbeing inverse to L
αgij (15). 3 Any αLn can be

associated to a prime ”integer” Lagrange space Ln.

The concept of nonlinear connection (N–connection) on
αLn can be introduced similarly to that on nonholonomic
fractional manifold (1; 2) considering the fractional tan-
gent bundle αTM.

Definition: A N–connection αN on αTM is defined by
a nonholonomic distribution (Whitney sum) with conven-
tional h– and v–subspaces, h αTM and v αTM, when

αT αTM = h αTM⊕v αTM. (16)

Locally, a fractional N–connection is defined by a set of
coefficients, αN={ αNa

i }, when
αN= αNa

i (u)(dxi)α ⊗ α∂a, (17)

see local bases (2) and (3).

Let us consider values yk(τ) = dxk(τ)/dτ, for x(τ)
parametrizing smooth curves on a manifold M with
τ ∈ [0, 1]. The fractional analogs of such configurations are
determined by changing d/dτ into the fractional Caputo
derivative α∂τ = 1τ

α∂τ when αyk(τ) = α∂τxk(τ).
For simplicity, we shall omit the label α for y ∈ αTM
if that will not result in ambiguities and/or we shall do
not associate to it an explicit fractional derivative along a
curve.

By straightforward computations, following the same
scheme as in (7) but with fractional derivatives and in-
tegrals, we prove:

Theorem: Any αL defines the fundamental geometric
objects determining canonically a nonholonomic fractional
Riemann–Cartan geometry on αTM being satisfied the
properties:

(1) The fractional Euler–Lagrange equations
α∂τ ( 1yi

α∂i
αL)− 1xi

α∂i
αL = 0 (18)

are equivalent to the fractional ”nonlinear geodesic”
(equivalently, semi–spray) equations

( α∂τ )2 xk + 2 αGk(x, αy) = 0, (19)

where

αGk =
1
4 L

αgkj [yj
1yj

α∂j ( 1xi
α∂i

αL)−

1xi
α∂i

αL]

defines the canonical N–connection
α
LNa

j = 1yj
α∂j

αGk(x, αy). (20)

(2) There is a canonical (Sasaki type) metric structure,

L
αg = α

Lgkj(x, y) αek ⊗ αej +
α
Lgcb(x, y) α

Lec ⊗ α
Leb,

where the preferred frame structure (defined linearly
by α

LNa
j ) is α

Leν = ( α
Lei, ea).

3 We shall put a left label L to certain geometric objects if it is
necessary to emphasize that they are induced by Lagrange generating
function. Nevertheless, such labels will be omitted (in order to
simplify the notations) if that will not result in ambiguities.

(3) There is a canonical metrical distinguished connec-
tion

α
c D = (h α

c D, v α
c D) = { α

c Γγ
αβ

= ( αL̂i
jk, αĈi

jc)} ,

(in brief, d–connection), which is a linear connection
preserving under parallelism the splitting (16) and
metric compatible, i.e. α

c D ( L
αg) = 0, when

α
c Γi

j = α
c Γi

jγ
α
Leγ = L̂i

jkek + Ĉi
jc

α
Lec, (21)

for L̂i
jk = L̂a

bk, Ĉi
jc = Ĉa

bc in α
c Γa

b = α
c Γa

bγ
α
Leγ =

L̂a
bkek + Ĉa

bc
α
Lec,

αL̂i
jk =

1
2

α
Lgir ( α

Lek
α
Lgjr + α

Lej
α
Lgkr − α

Ler
α
Lgjk) ,

αĈa
bc =

1
2

α
Lgad ( αec

α
Lgbd + αec

α
Lgcd − αed

α
Lgbc)

are just the generalized Christoffel indices. 4

Finally, in this section, we note that:

Remark: We note that α
c D is with nonholonomically

induced torsion structure defined by 2–forms

α
LT i = Ĉi

jc
αei ∧ α

Lec,

α
LT a =−1

2 LΩa
ij

αei ∧ αej +
(

αeb
α
LNa

i − αL̂a
bi

)
αei ∧ α

Leb

computed from the fractional version of Cartan’s structure
equations

d αei − αek ∧ α
c Γi

k =− α
LT i,

d α
Lea − α

Leb ∧ α
c Γa

b =− α
LT a,

d α
c Γi

j − α
c Γk

j ∧ α
c Γi

k =− α
LRi

j

in which the curvature 2–form is denoted α
LRi

j .

In general, for any d–connection on αTM, we can
compute respectively the N–adapted coefficients of torsion
αT τ = { αΓτ

βγ} and curvature αRτ
β = { αRτ

βγδ} as it
is explained for general fractional nonholonomic manifolds
in (1; 2).

4. ANALOGOUS FRACTIONAL GRAVITY

Let us consider a ”prime” nonholonomic manifold V is
of integer dimension dim V = n + m, n ≥ 2,m ≥ 1. 5

Its fractional extension αV is modelled by a quadruple
(V, αN, αd, αI), where αN is a nonholonomic distribu-
tion stating a nonlinear connection (N–connection) struc-
ture. The fractional differential structure αd is determined
4 for integer dimensions, we contract ”horizontal” and ”vertical”
indices following the rule: i = 1 is a = n + 1; i = 2 is a = n + 2; ...
i = n is a = n + n”
5 A nonholonomic manifold is a manifold endowed with a non–
integrable (equivalently, nonholonomic, or anholonomic) distribu-
tion. There are three useful (for our considerations) examples when 1)
V is a (pseudo) Riemannian manifold; 2) V = E(M), or 3) V = TM,
for a vector, or tangent, bundle on a base manifold M. We also
emphasize that in this paper we follow the conventions from Refs.
(7; 1; 2) when left indices are used as labels and right indices may
be abstract ones or running certain values.



by Caputo fractional derivative (1) following formulas (2)
and (3).

For any respective frame and co–frame (dual) structures,
αeα′ = ( αei′ ,

αea′) and αeβ′ = ( αei′ , αea′) on αV, we
can consider frame transforms

αeα = A α′
α (x, y) αeα′ and αeβ = Aβ

β′(x, y) αeβ′ . (22)

A subclass of frame transforms (22), for fixed ”prime”
and ”target” frame structures, is called N–adapted if
such nonholonomic transformations preserve the splitting
defined by a N–connection structure N = {Na

i }.
Under (in general, nonholonomic) frame transforms, the
metric coefficients of any metric structure αg on αV are
re–computed following formulas

αgαβ(x, y) = A α′
α (x, y) A β′

β (x, y) αgα′β′(x, y). (23)

For any fixed αg and αN, there are N–adapted frame
transforms when

αg = αgij(x, y) αei ⊗ αej + αhab(x, y) αea ⊗ αeb,

= αgi′j′(x, y) αei′ ⊗ αej′ + αha′b′(x, y) αea′ ⊗ αeb′ ,

where αea and αea′ are elongated following formulas (6),
respectively by αNa

j and
αNa′

j′ = A a′
a (x, y)Aj

j′(x, y) αNa
j(x, y), (24)

or, inversely,
αNa

j = A a
a′ (x, y)Aj′

j(x, y) αNa′
j′(x, y) (25)

with prescribed αNa′
j′ .

We preserve the N–connection splitting for any frame
transform of type (22) when

αgi′j′ = Ai
i′A

j
j′

αgij ,
αha′b′ = Aa

a′A
b
b′

αhab, (26)

for A i′
i constrained to get holonomic αei′ = A i′

i
αei,

i.e. [ αei′ , αej′ ] = 0 and αea′ = dya′ + αNa′
j′dxj′ , for

certain xi′ = xi′(xi, ya) and ya′ = ya′(xi, ya), with αNa′
j′

computed following formulas (24). Such conditions can be
satisfied by prescribing from the very beginning a nonholo-
nomic distribution of necessary type. The constructions
can be equivalently inverted, when αgαβ and αNa

i are
computed from αgα′β′ and αNa′

i′ , if both the metric and
N–connection splitting structures are fixed on αV.

An unified approach to Einstein–Lagrange/Finsler gravity
for arbitrary integer and non–integer dimensions is pos-
sible for the fractional canonical d–connection αD̂. The
fractional gravitational field equations are formulated for
the Einstein d–tensor (14), following the same principle
of constructing the matter source αΥβδ as in general
relativity but for fractional metrics and d–connections,

αÊ βδ = αΥβδ. (27)

Such a system of integro–differential equations for gener-
alized connections can be restricted to fractional nonholo-
nomic configurations for α∇ if we impose the additional
constraints

αL̂c
aj = αea( αN c

j ), αĈi
jb = 0, αΩa

ji = 0. (28)

There are not theoretical or experimental evidences that
for fractional dimensions we must impose conditions of
type (28) but they have certain physical motivation if we
develop models which in integer limits result in the general
relativity theory.
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