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1. INTRODUCTION

The history of fractional order derivative was started
by L’ Hospital and Leibnitz. See Kilbas et al. (2006),
Lakshmikantham et al. (2009), Podlubny (1999), Samko
et al. (1993) The question of L’ Hospital to Leibnitz gave
a new theory mathematicians. Then, the mathematicians
has developed the fractional calculus and the theory of
fractional differential equations. The improvement of these
studies are continued still and gained new results math and
this results are also applied different disciplines such as
physics, chemistry and engineering. See Lakshmikantham
et al. (2009), Lakshmikantham et al. (1999), Yakar (2010).

The application of Lyapunov’s second method in stability
of differential equations, please see Lakshmikantham et al.
(1989), Lakshmikantham et al. (2009),Lakshmikantham et
al. (2001), Shaw et al. (2000), Yakar (2010), Yakar (2007)
and Yakar et al. (2005), that has the advantage of not
requiring behavior of solutions of the system which inves-
tigates. Recently in the work of Yakar (2007), Yakar et al.
(2008) and Yakar et al. (2009), the stability with initial
time difference in terms of two measure and the properties
of fractional differential equations in Lakshmikantham et
al. (2009) and Yakar (2010) has been investigated. The
strict stability criteria of differential equations in Laksh-
mikantham et al. (2009) and initial time difference strict
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stability worked and obtained comparison results and the
appropriate definitions in the work of Yakar (2007).

In this paper, we investigated strict stability criteria with
initial time difference in terms of two measure on fractional
order differential equations and we have used the definition
of Caputo’s fractional order derivative because of some
advantages which we express. We look into the strict
stability criteria in terms of two measures with initial
time difference a perturbed fractional order differential
system with respect to an unperturbed fractional order
differential system which have different initial time and
initial position. Using Lyapunov functions and comparison
principle have been given sufficient conditions for the strict
stability of dynamic systems on fractional order differential
equations.

2. PRELIMINARIES

In this study, we have used Caputo’s fractional order
derivative. But we have three definition of fractional or-
der derivative: Caputo, Reimann-Liouville and Grünwald-
Letnikov. The definition of Caputo’s and Reimann-Liouville’s
fractional derivatives

cDqx =
1

Γ (1− q)

t

t0

(t− s)−q
x′(s)ds, t0 ≤ t ≤ T (2.1)

Dqx =
1

Γ (p)

(
d

dt

t

τ0

(t− s)p−1
x(s)ds

)
, t0 ≤ t ≤ T (2.2)



order of 0 < q < 1 , and p + q = 1 where Γ denotes the
Gamma function.

It can’t be denied that the fractional derivative of
Riemann-Liouville is importance for the development of
fractional calculus and fractional order differential equa-
tions. But in mathematical modeling of some applications
of various areas, there is a difficulty to interpret the initial
condition required for the initial value problems of frac-
tional order differential equations. The main advantage of
Caputo’s definition of fractional order derivative is that the
initial conditions for fractional order differential equations
with Caputo derivative take on the same form as that
of ordinary differential equations with integer derivatives
and another difference is that the Caputo derivative for a
constant C is zero, while the Riemann-Liouville fractional
derivative for a constant C is not zero but equals to
DqC = C(t−t0)

−q

Γ(1−q) . By using (2.1) and therefore,

cDqx(t) = Dq [x(t)− x(t0)] (2.3)

cDqx(t) = Dqx(t)− x(t0)
Γ (1− q)

(t− t0)
−q

. (2.4)

In particular, if x(t0) = 0, the equality holds
cDqx(t) = Dqx(t). (2.5)

and Caputo’s derivative is defined for functions for which
Riemann-Liouville fractional order derivative exists.

Let us write that Grünwald-Letnikov’s notion of fractional
order derivative in a convenient form

Dq
0x(t) = lim

h→0
nh=t−t0

1
hq

[x(t)− S (x, h, r, q)] (2.6)

where S (x, h, r, q) =
n∑

r=1
(−1)r+1

(
q
r

)
x (t− rh) . If x(t) is

continuous and dx(t)
dt exists and integrable, then Riemann-

Liouville and Grünwald-Letnikov fractional order deriva-
tives are connected by the relation

Dqx(t) = Dq
0x(t) =

x(t0) (t− t0)
−q

Γ (1− q)
+

t∫

τ0

(t− s)−q

Γ (1− q)
d

ds
x(s)ds.

(2.7)
By using (2.3) implies that we have the relations among
the Caputo, Riemann-Liouville and Grünwald-Letnikov
fractional derivatives

cDqx(t) = Dq [x(t)− x(t0)] (2.8)
cDqx(t) = Dq

0 [x(t)− x(t0)]

cDqx(t) =
1

Γ (1− q)

t∫

τ0

(t− s)−q dx(s)
ds

ds.

This relations of the definitions of the fractional order
derivative are important to understand of the properties
of the solutions of fractional order differential equations.

3. DEFINITION AND NOTATION

Consider the differential systems

cDqx(t) = f(t, x), x(t0) = x0 for t ≥ t0, t0 ∈ R+ (3.1)

cDqy(t) = f(t, y), y(τ0) = y0 for t ≥ τ0, τ0 ∈ R+ (3.2)
where x0 = limt→t0 Dq−1x(t) and y0 = limt→τ0 Dq−1y(t)
exist and the perturbed fractional order differential system
with Caputo’s derivative of (3.1)

cDqy(t) = F (t, y), y(τ0) = y0 for t ≥ τ0 (3.3)
where y0 = limt→τ0 Dq−1y(t) exist and f, F ∈ C[[t0, τ0 + T ]×
Rn,Rn]; satisfy a local Lipschitz condition on the set R+×
Sρ, Sρ = [x ∈ Rn : ‖x‖ ≤ ρ < ∞] and f(t, 0) = 0 for t ≥ 0.
A special case of (3.3) is where F (t, y) = f (t, y) + R (t, y)
and R (t, y) is the perturbation term. Assume that the ex-
istence and uniqueness of the solutions x (t) = x (t, t0, x0)
of (3.1) for t ≥ t0 and y (t) = y (t, τ0, y0) of (3.3) for t ≥ t0.

The basic existence and uniqueness result with the Lips-
chitz condition by using contraction mapping theorem and
a weighted norm with Mittag-Leffler function in [6, 10, 11,
12]. We introduce definitions for a variety of classes of
functions that we use in Sections 4 and for generalized
Dini-like derivatives and initial time difference strict sta-
bility in terms of two measures. All inequalities between
vectors are componentwise.

Let us give the definition of the fractional strict stability
in terms of two measures with initial time difference.

Definition 3.1: The solution y (t, τ0, y0) of the perturbed
system (3.3) through (τ0, y0) is said to be initial time
difference (h0 − h)−strict stable in fractional case with
respect to the solution x (t− η, t0, x0), where x (t, t0, x0) is
any solution of the unperturbed system (3.1) for t ≥ τ0 ≥
0, t0 ∈ R+ and η = τ0−t0. If given any ε1 > 0 and τ0 ∈ R+

there exist δ1 = δ1 (ε1, τ0) > 0 and δ2 = δ2 (ε1, τ0) > 0 such
that

h(t, y (t, τ0, y0)− x (t− η, t0, x0)) < ε1 for t ≥ τ0 whenever

h(τ0, y0 − x0) < δ1 and h0(τ0, τ0 − t0) < δ2

and, for δ∗1 < δ1 and δ∗2 < δ2 there exist 0 < ε2 <
min {δ∗1 , δ∗2} such that

h(t, y (t, τ0, y0)− x (t− η, t0, x0)) > ε2 for t ≥ τ0 whenever

h(τ0, y0 − x0) > δ∗1 and h0(τ0, τ0 − t0) > δ∗2 .

Definition 3.2: If δ1, δ2 and ε2 in Definition 3.1 are
independent of τ0, then the solution y (t, τ0, y0) of the
perturbed system (3.3) through (τ0, y0) is initial time
difference (h0 − h)−uniformly strict stable in fractional
case with respect to the solution x (t− η, t0, x0) for t ≥ τ0.

Definition 3.3: The solution y (t, τ0, y0) of the system
(3.3) through (τ0, y0) is said to be initial time difference



(h0−h)−strictly attractive in fractional case with respect
to the solution x (t− η, t0, x0), where x (t, t0, x0) is any
solution of the system (3.1) for t ≥ τ0 ≥ 0, t0 ∈ R+ and
η = τ0 − t0. If given any α1 > 0, γ1 > 0, ε1 > 0 and
τ0 ∈ R+, for every α2 < α1 and γ2 < γ1, there exist
ε2 < ε1, T1 = T1 (ε1, τ0) and T2 = T2 (ε1, τ0) such that
h(t, y (t, τ0, y0)−x (t− η, t0, x0)) < ε1, T1+τ0 ≤ t ≤ T2+τ0

whenever h(τ0, y0 − x0) < α1 and h0(τ0, τ0 − t0) < γ1

and
h(t, y (t, τ0, y0)−x (t− η, t0, x0)) > ε2, T2+τ0 ≥ t ≥ T1+τ0

whenever h(τ0, y0 − x0) > α2 and h0(τ0, τ0 − t0) > γ2.

If T1and T2 in Definition 3.3 are independent of τ0, then
the solution y(t, τ0, y0) of the system (3.3) is initial
time difference (h0 − h)−strictly uniformly attractive in
fractional case with respect to the solution x(t− η, t0, x0)
for t ≥ τ0.

Definition 3.4: The solution y (t, τ0, y0) of the system
(3.3) through (τ0, y0) is said to be initial time difference
(h0 − h)−strictly asymptotically stable in fractional case
with respect to the solution x (t− η, t0, x0) if Definition
3.3 satisfies and the solution y (t, τ0, y0) of the perturbed
system (3.3) through (τ0, y0) is initial time difference (h0−
h)−strictly stable in fractional case with respect to the
solution x (t− η, t0, x0) of the unperturbed system (3.1).

If T1and T2 in Definition 3.3 are independent of τ0, then
the solution y(t, τ0, y0) of the system (3.3) is initial
time difference (h0−h)−uniformly strictly asymptotically
stable in fractional case with respect to the solution x(t−
η, t0, x0) for t ≥ τ0.

Definition 3.5: For any real-valued function V ∈ C[R+×
Rn,R+], we define the fractional order Dini derivatives in
Caputo’s sense

cDq
+V (t, x) = lim

h→0+
sup

1
hq

[V (t, x)−V (t−h, x−hqf(t, x))]

and

cDqV (t, x) = lim
h→0−

inf
1
hq

[V (t, x)−V (t−h, x−hqf(t, x))]

where x(t) = x (t, t0, x0) for (t, x) ∈ R+ × Rn.

Definition 3.6: For a real-valued function V (t, x) ∈
C[R+ × Rn,R+] we define the generalized fractional or-
der derivatives (Dini-like derivatives) in Caputo’s sense
c
∗D

q
+V (t, y − ∼

x) and c
∗D

qV (t, y − ∼
x) as follows

c
∗D

q
+V (t, y − ∼

x)

= lim
h→0+

sup[
V (t, y − ∼

x)− V (t− h, y − ∼
x − hqH(t, y,

∼
x))

hq
]

c
∗D

qV (t, y − ∼
x)

= lim
h→0−

inf[
V (t, y − ∼

x)− V (t− h, y − ∼
x − hqH(t, y,

∼
x))

hq
]

where H(t, y,
∼
x) = F (t, y)−

∼
f (t,

∼
x)) for (t, x)∈ R+ × Rn.

Definition 3.7: The class K is set of functions such that
K := [a : a ∈ C[[0, ρ],R+], a is strictly increasing and
a(0) = 0 and also a(t) →∞ as t →∞].

Definition 3.8: A function h(t, x) is said to belong to the
class Γ if h ∈ C[R+ ×Rn,R+], inf(t,x) h(t, x) = 0 for all
(t, x) ∈ R+ ×Rn.

Definition 3.9: A function h(t, x) is said to belong to the
class Γ0 if h ∈ Γ, supt∈R+

h(t, x) exist for x ∈Rn.

4. MAIN RESULTS

In this section we obtain the strict stability concepts in
fractional case with initial time difference parallel to the
Lyapunov’s results.

Theorem 4.1: Assume that

(A1) for each µ, 0 < µ < ρ, Vµ ∈ C[R+ × Sρ,R+] and Vµ

is locally Lipschitzian in z and for (t, z) ∈ R+ × Sρ and
h(t, z) ≥ µ,

b1(h(t, z)) ≤ Vµ(t, z) ≤ a1(h(t, z)), a1, b1 ∈ K

c
∗D

q
+Vµ(t, z) ≤ 0; (4.1)

(A2) for each θ, 0 < θ < ρ, Vθ ∈ C[R+ × Sρ,R+] and Vθ

is locally Lipschitzian in z and for (t, z) ∈ R+ × Sρ and
h(t, z) ≤ θ,

b2(h(t, z)) ≤ Vθ(t, z) ≤ a2(h(t, z)), a2, b2 ∈ K

c
∗D

q
+Vθ(t, z) ≥ 0; (4.2)

where z(t) = y(t, τ0, y0) − x(t − η, t0, x0) for t ≥ τ0,
y(t, τ0, y0) the solution of the system (3.3) through (τ0, y0),
x(t, t0, x0) is any solution of the system (3.1) for t ≥ τ0 ≥
t0 > 0, and η = τ0 − t0.

Then the solution y(t, τ0, y0) of the perturbed system
(3.3) is the initial time difference (h0, h)−strictly stable in
fractional case with respect to the solution x(t−η, t0, x0) of
the unperturbed system, where x(t, t0, x0) is any solution
of the system (3.1) for t ≥ τ0 ≥ t0 > 0.

Proof: Let 0 < ε1 < ρ and τ0 ∈ R+ and choose
δ1 = δ1(ε1, τ0) > 0 and δ2 = δ2(ε1, τ0) > 0 such that

a1(δ1) < b1(ε1) (4.3)
since we have b1(ε1) ≤ a1(δ1) in (A1). Then we claim that

h(t, y(t, τ0, y0)− x(t− η, t0, x0)) < ε1 for t ≥ τ0 (4.4)
whenever h(τ0, y0 − x0) < δ1 and h0(τ0, τ0 − t0) < δ2.

If (4.4) is not true, then there would exist t1 > t2 > τ0

and the solution of (3.1) and from (4.1) with h(τ0, y0 −
x0) < δ1, h0(τ0, τ0 − t0) < δ2 satisfying

h(t1, y(t1)− ∼
x(t1)) = ε1, h(t2, y(t2)− ∼

x(t2)) = δ1



and δ1 ≤ h(t, y(t)− ∼
x(t)) ≤ ε1 for t ∈ [t2, t1].

where
∼
x(t) = x(t− η, t0, x0).

Let us set µ = δ1, and using (A1) we get

b1(ε1) = b1(h(t1, y(t1)− ∼
x(t1)))

≤ Vµ(t1, y(t1)− ∼
x(t1))

≤ Vµ(t2, y(t2)− ∼
x(t2))

≤ a1(h(t2, y(t2)− ∼
x(t2)))

= a1(δ1)
and we have the inequality

b1(ε1) ≤ a1(δ1)
which contradicts with (4.3). Hence (4.4) is valid.

Now let 0 < δ∗1 < δ1, 0 < δ∗2 < δ2 and choose 0 < h(τ0, y0−
x0) < δ∗1 < δ1 and 0 < h0(τ0, τ0 − t0) < δ∗2 < δ2 for
0 < ε2 < δ = min{δ∗1 , δ∗2} such that

a2(ε2) < b2(δ). (4.5)

Then we can prove that

ε2 < h(t, y(t, τ0, y0)−x(t−η, t0, x0)) < ε1 for t ≥ τ0 (4.6)
whenever δ∗1 < h(τ0, y0 − x0) < δ1 and δ∗2 < h0(τ0, τ0 −
t0) < δ2.

If (4.6) is not true, then there would exist t1 > t2 > τ0

and the solution of (3.1) and (4.2) with δ∗1 < h(τ0, y0 −
x0) < δ1, δ

∗
2 < h0(τ0, τ0 − t0) < δ2 satisfying

h(t1, y(t1)− ∼
x(t1)) = ε2, (4.7)

h(t2, y(t2)− ∼
x(t2)) = δ

and h(t, y(t)− ∼
x(t)) ≤ δ for t ∈ [t2, t1].

Let us set θ = δ and using (A2), we get

a2(ε2) = a2(h(t1, y(t1)− ∼
x(t1)))

≥ Vθ(t1, y(t1)− ∼
x(t1))

≥ Vθ(t2, y(t2)− ∼
x(t2))

≥ b2(h(t2, y(t2)− ∼
x(t2)))

= b2(δ)
and we have the inequality

a2(ε2) ≥ b2(δ)
which contradicts with (4.5). Thus (4.6) is valid.

Then the solution y(t, τ0, y0) of the perturbed system (3.3)
through (τ0, y0) is initial time difference (h0, h)−strictly
stable in fractional case with respect to the solution of
unperturbed system x(t− η, t0, x0) for t ≥ τ0.

This completes the proof of Theorem 4.1. ¤
If δ1, δ2 and ε2 in the proof of the Theorem 4.1 are chosen
independent of τ0, then the solution y (t, τ0, y0) of the
perturbed system (3.3) is initial time difference (h0 −
h)−strictly uniformly stable in fractional case with respect
to the solution x (t− η, t0, x0) for t ≥ τ0.

Theorem 4.2: Assume that

(A1) for each µ, 0 < µ < ρ, Vµ ∈ C[R+ × Sρ,R+] and Vµ

is locally Lipschitzian in z and for (t, z) ∈ R+ × Sρ and
h(t, z) ≥ µ,

b1(h(t, z)) ≤ Vµ(t, z) ≤ a1(h(t, z)), a1, b1 ∈ K,

c
∗D

q
+Vµ(t, z) ≤ −c1(h(t, z)) , c1 ∈ K; (4.8)

(A2) for each θ, 0 < θ < ρ, Vθ ∈ C[R+ × Sρ,R+] and Vθ

is locally Lipschitzian in z and for (t, z) ∈ R+ × Sρ and
h(t, z) ≤ θ,

b2(h(t, z)) ≤ Vθ(t, z) ≤ a2(h(t, z)), a2, b2 ∈ K,

c
∗D

q
+Vθ(t, z) ≥ −c2(h(t, z)) c2 ∈ K; (4.9)

where z(t) = y(t, τ0, y0) − x(t − η, t0, x0) for t ≥
τ0, y(t, τ0, y0) of the perturbed system (3.3) through
(τ0, y0) and x(t−η, t0, x0), where x(t, t0, x0) is any solution
of the unperturbed system (3.1) for t ≥ τ0 ≥ t0 > 0.

Then the solution y(t, τ0, y0) of the perturbed sys-
tem (3.3) through (τ0, y0) is the initial time difference
(h0, h)−strictly uniformly asymptotically stable in frac-
tional case with respect to the solution x(t − η, t0, x0) of
the unperturbed system, where x(t, t0, x0) is any solution
of the unperturbed system (3.1) for t ≥ τ0 ≥ t0 > 0.

Proof: We note that (4.8) implies (4.1). However, (4.9)
does not yield (4.2). Therefore, we get because of (4.8) only
(h0, h)−uniformly stability in fractional case of perturbed
systems related to initial time difference with respect to
unperturbed systems that is for given any ε1 ≤ ρ and τ0 ∈
R+ there exist δ10 = δ10(ε1) > 0 and δ20 = δ20(ε1) > 0
such that

h(t, y(t, τ0, y0)− x(t− η, t0, x0)) < ε1 for t ≥ τ0 whenever
h(τ0, y0 − x0) < δ10 and h0(τ0, τ0 − t0) < δ20. (4.10)

To prove the conclusion of Theorem 4.2 we need to show
that the solution y(t, τ0, y0) of the system (3.3) through
(τ0, y0) is initial time difference (h0, h)−strictly uniformly
attractive in fractional case with respect to x(t− η, t0, x0)
for this purpose, let ε1 = ρ and set δ10 = δ1(ρ) and
δ20 = δ2(ρ) so that (4.10) yields

h(t, y(t, τ0, y0)− x(t− η, t0, x0)) < ρ for t ≥ τ0 whenever

h(τ0, y0 − x0) < δ10 and h0(τ0, τ0 − t0) < δ20.

Let h(τ0, y0−x0) < δ10 and h0(τ0, τ0−t0) < δ20. We show,
using standard argument, that there exists a t∗ ∈ [τ0, τ0 +

T ], we choose T = T (ε, τ0) ≥
(

a1(max{δ10,δ20})
c1(min{δ1,δ2}) Γ (q + 1)

) 1
q

where δ10 and δ20 are the numbers corresponding to ε1 in
(4.10) that is in initial time difference (h0, h)−uniformly
stability in fractional case of perturbed system with re-
spect to x(t−η, t0, x0) such that h(τ0, y(t∗, τ0, y0)−x(t∗−
η, t0, x0)) < δ1 for any solutions of the system (3.3) with



h(τ0, y0− x0) < δ10 and h0(τ0, τ0− t0) < δ20. If this is not
true, we will have h(t, y(t, τ0, y0)−x(t−η, t0, x0)) ≥ δ1 for
t ∈ [τ0, τ0 + T ]. Then, µ = δ1 and using (A1) with (4.8),
we have

0 < b1(δ1) ≤ b1(h(τ0 + T, y(τ0 + T )− ∼
x(τ0 + T )))

≤ Vµ(τ0 + T, y(τ0 + T )− ∼
x(τ0 + T ))

≤ Vµ(τ0, y0 − x0)

− 1
Γ (q)

∫ τ0+T

τ0

(t− s)q−1
c1(h(s, y(s)− ∼

x(s)))ds

≤ a1(max{δ10, δ20})

−c1(min{δ1, δ2})
Γ (q)

∫ τ0+T

τ0

(t− s)q−1
ds

≤ a1(max{δ10, δ20})− c1(min{δ1, δ2})
Γ (q + 1)

T q

≤ 0
in view of the choice of T. This contradiction implies that
there exist a t∗ ∈ [τ0, τ0 + T ] satisfying h(τ0, y(t∗, τ0, y0)−
x(t∗−η, t0, x0)) < δ1. Due to the (h0, h)−uniform stability
in fractional case y(t, τ0, y0) of the unperturbed systems
with initial time difference with respect to x(t− η, t0, x0),
this yields that

h(t, y(t, τ0, y0)− x(t− η, t0, x0)) < ε1 for t ≥ τ0 + T ≥ t∗

which implies that there exists a τ0 < T1 < T such that

h(τ0 + T, y(τ0 + T )− x(τ0 + T − η)) = ε1

Now, for any δ12, 0 < δ12 < δ10 and 0 < δ12 < δ20 we
choose ε2 such that b2(δ12) > a2(ε2) and 0 < ε2 < ε1 < δ12.

Suppose that δ12 < h(τ0, y0 − x0) < min{δ10, δ20} and
δ12 < h0(τ0, τ0 − t0) < min{δ10, δ20}.Let us define τ =
[Γ(q)(b2(ε1)−a2(ε2))

c2(ε1)
]
1
q , and T2 = T1 + τ.Since h(t, y(t) −

∼
x(t)) ≤ ε1 for t ≥ τ0 + T1, choosing θ = ε1 and using
(A2) with (4.9) we have for t ∈ [τ0 + T1, τ0 + T2],

a2(
∥∥∥y(t)− ∼

x(t)
∥∥∥)≥ Vθ(t, y(t)− ∼

x(t))

≥ Vθ(τ0 + T1, y(τ0 + T1)− ∼
x(τ0 + T1))

− 1
Γ (q)

∫ t

τ0+T1

(t− s)q−1
c2(h(s, y(s)− ∼

x(s)))ds

≥ b2(ε1)

− 1
Γ (q)

∫ t

τ0+T1

(t− s)q−1
c2(h(s, y(s)− ∼

x(s)))ds

≥ b2(ε1)− c2(ε1)
Γ (q)

[t− (τ0 + T1)]q.

Since, t− (τ0 + T1) > τ and a−1
2 exists, it follows that

a2(
∥∥∥y(t)− ∼

x(t)
∥∥∥) > b2(ε1)− c2(ε1)

Γ (q)
[
Γ (q) (b2(ε1)− a2(ε2))

c2(ε1)
]

= a2(ε2).
This yields that

h(t, y(t, τ0, y0)−x(t−η, t0, x0)) ≥ ε2 for t ∈ [τ0+T1, τ0+T2]
and therefore,

ε2 < h(t, y(t, τ0, y0)−x(t−η, t0, x0)) < ε1,t ∈ [τ0+T1, τ0+T2].

Then the solution y(t, τ0, y0) of the perturbed system (3.3)
through (τ0, y0) is initial time difference (h0, h)− strictly
uniformly asymptotically stable in fractional case with
respect to the solution x(t − η, t0, x0), where x(t, t0, x0)
is any solution of the unperturbed system (3.1) for t ≥
τ0 ≥ t0 > 0.This completes the proof. ¤
Before we express the comparison result in fractional case,
we need to give uncoupled comparison fractional order
differential systems and to define (h0, h)−strictly stability
in fractional case of comparison fractional order differential
systems. Consider the uncoupled comparison fractional
order differential systems:{

(i)c
Dq u1 = g1(t, u1), u1 (τ0) = u10 ≥ 0

(ii)c
Dq u2 = g2(t, u2), u2 (τ0) = u20 ≥ 0 (4.11)

where g1, g2 ∈ C
[
R2

+,R
]
. The fractional order compari-

son system (4.11) is said to be (h0, h)−strictly stable in
fractional case:

If given any ε1 > 0 and t ≥ τ0, τ0 ∈ R+, there exist a
δ1 > 0 such that

h0(τ0, u10) < δ1 implies h(t, u1(t)) < ε1 for t ≥ τ0

and for every δ2 ≤ δ1 there exists an ε2, 0 < ε2 < δ2 such
that

h0(τ0, u20) > δ2 implies h(t, u2(t)) > ε2 for t ≥ τ0.

Here, u1(t) and u2(t) are any solutions of (i) in (4.11) and
(ii) in (4.11); respectively. Following this theorem based
on this definition and that theorem is formulated in terms
of comparison principle. ¤

Theorem 4.3: Assume that

(A1) for each µ, 0 < µ < ρ, Vµ ∈ C[R+ × Sρ,R+] and Vµ

is locally Lipschitzian in z and for (t, z) ∈ R+ × Sρ and
h(t, z) ≥ η,

b1(h(t, z)) ≤ Vµ(t, z) ≤ a1(h(t, z)), a1, b1 ∈ K,

c
∗D

q
+Vµ(t, z) ≤ g1(t, Vµ(t, z)); (4.12)

(A2) for each θ, 0 < θ < ρ, Vθ ∈ C[R+ × Sρ,R+] and Vθ

is locally Lipschitzian in z and for (t, z) ∈ R+ × Sρ and
h(t, z) ≤ θ,

b2(h(t, z)) ≤ Vθ(t, z) ≤ a2(h(t, z)), a2, b2 ∈ K,

c
∗D

q
+Vθ(t, z) ≥ g2(t, Vθ(t, z)); (4.13)

where g2(t, u) ≤ g1(t, u), g1, g2 ∈ C[R2
+,R], g1(t, 0) ≡

g2(t, 0) ≡ 0 and z(t) = y(t, τ0, y0) − x(t − η, t0, x0) for
t ≥ τ0, y(t, τ0, y0) of the system (3.3) through (τ0, y0) and



x(t − η, t0, x0), where x(t, t0, x0) is any solution of the
system (3.1) for t ≥ τ0 ≥ t0 > 0.

Then any (h0, h)−strict stability concept in fractional
case of the comparison system implies the corresponding
(h0, h)−strict stability concept in fractional case of the
solution y(t, τ0, y0) of the perturbed system (3.3) through
(τ0, y0) with respect to the solution x(t − η, t0, x0) of
the unperturbed system (3.1) with initial time difference
where x(t, t0, x0) is any solution of the unperturbed system
(3.1) for t ≥ τ0 ≥ t0 > 0.

Proof: First we will prove the case of initial time difference
(h0, h)−strictly uniformly stability in fractional case of the
perturbed system with respect to the unperturbed system.
Suppose that the comparison differential systems in (4.11)
is (h0, h)−strictly uniformly stable in fractional case, then
for any given ε1, 0 < ε1 < δ, there exist a δ∗ > 0 such that
0 < u10 < δ∗ implies that u1(t, τ0, u10) < b1(ε1) for t ≥ τ0

(4.14)
where u1(t) = u1(t, τ0, u10) is the solution of (4.11).

For this ε1 > 0, we choose δ1 > 0 and δ11 > 0, such that
a1(δ1) ≤ δ∗ and δ∗1 < ε1 where δ∗1 = max{δ1, δ11}, then we
claim that

h(τ0, y0 − x0) < δ1, h0(τ0, τ0 − t0) < δ11 ⇒ (4.15)

h(t, y(t, τ0, y0)− x(t− η, t0, x0)) < ε1,t ≥ τ0.

If it is not true, then there exist t1 and t2, t2 > t1 > τ0

and a solution of

cDqz =
∼
f (t, z), z(τ0) = y0 − x0 for t ≥ τ0 with

h0(τ0, τ0 − t0) < δ11 and h(τ0, y0 − x0) < δ1.

h(t1, y(t1, τ0, y0)− x(t1 − η, t0, x0)) = δ∗1 ,

h(t2, y(t2, τ0, y0)− x(t2 − η, t0, x0)) = ε1 and

δ∗1 < h(t, y(t, τ0, y0)− x(t− η, t0, x0)) < ε1 for [t1, t2].

Choosing µ = δ∗1 and using the theory of differential
inequalities, together with (A1), we obtain (4.12) and
(4.14)

b1(ε1) = b1(h(t2, y(t2, τ0, y0)− x(t2 − η, t0, x0)))

≤ Vµ(t2, y(t2, τ0, y0)− x(t2 − η, t0, x0))

≤ r(t2, t1, Vµ(t1, y(t1, τ0, y0)− x(t1 − η, t0, x0)))

≤ r(t2, t1, a1(δ1))

≤ r(t2, t1, δ∗)

< b1(ε1)
which is a contradiction. Here r(t, t0, u10) is the maximal
solution of (4.11). Hence, (4.15) is true and we have
initial time difference (h0, h)−strictly uniformly stability
in fractional case.

Now, we shall prove initial time difference (h0, h)−strictly
uniformly attractive in fractional case.

For any given δ2, ε2 > 0, δ2 < δ∗ we choose
−
δ2and

−
ε2such

that a1(δ2) <
−
δ2and b1(ε2) ≥ −

ε . For these
−
δ2 and

−
ε2,

since (4.11) is strictly uniformly attractive in fractional

case, for any
−
δ3 <

−
δ2there exist

−
ε3 and T1 and T2 (we

assume T2 < T1) such that
−
δ3 < u10 = u20 <

−
δ2 implies

r(t, τ0, u10)≤ r(t, τ0,
−
δ2) <

−
ε2

ρ(t, τ0, u20)≥ ρ(t, τ0,
−
δ3) >

−
ε2

where r(t, τ0, u10) and ρ(t, τ0, u20) is the maximal solution
and minimal solution of (4.11) (i) and (4.11) (ii); respec-
tively.

Now, for any δ3, let b2(δ3) ≥
−
δ3. We choose ε3 such

that a2(ε3) <
−
ε3. Then by using comparison principle in

fractional case (4.11), (i) and (A1), we have

b1(h(t, y(t, τ0, y0)− x(t− η, t0, x0)))

≤ Vµ(t, y(t, τ0, y0)− x(t− η, t0, x0)))

≤ r(t, τ0, Vµ(τ0, y0 − x0))

≤ r(t, τ0, a1(h(τ0, y0 − x0)))

≤ r(t, τ0,
−
δ2)

<
−
ε2 ≤ b1(ε2)

b1(h(t, y(t, τ0, y0)− x(t− η, t0, x0))) < b1(ε2) (4.16)
which implies that h(t, y(t, τ0, y0) − x(t − η, t0, x0)) < ε2
for t ∈ [τ0 + T2, τ0 + T1].

Similarly, by using comparison principle in fractional case
(4.11), (ii) and (A2), we get

a2(h(t, y(t, τ0, y0)− x(t− η, t0, x0)))

≥ Vθ(t, y(t, τ0, y0)− x(t− η, t0, x0))

≥ ρ(t, τ0, Vθ(τ0, y0 − x0))

≥ ρ(t, τ0, b2(h(τ0, y0 − x0))

≥ ρ(t, τ0, b2(δ3))

≥ ρ(t, τ0,
−
δ3)

>
−
ε3 ≥ a2(ε3)

a2(h(t, y(t, τ0, y0)− x(t− η, t0, x0))) > a2(ε3) (4.17)

which implies that for h(t, y(t, τ0, y0)−x(t−η, t0, x0)) > ε3
for τ0 +T2 < t < τ0 +T1. Thus (4.16) and (4.17) yield that
ε3 < h(t, y(t, τ0, y0)−x(t−η, t0, x0)) < ε2, τ0+T2 < t < τ0+T1

provided that δ2 < h(τ0, y0−x0) < δ1 and δ∗ < h0(τ0, τ0−
t0) < δ11. Hence, the solution y(t, τ0, y0) of the perturbed
system of (3.3) through (τ0, y0) is initial time difference
(h0, h)−strictly uniformly attractive in fractional case with
respect to the solution x(t − η, t0, x0) of the unperturbed
system where x(t, t0, x0) is any solution of the unperturbed
system of (3.1) for t ≥ τ0 ≥ t0 > 0. Therefore the proof is
completed.
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