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Abstract: The study of N-body systems and their simulation with various models always excited the scientific interest. Here we present an N-body model that has been under investigation in the last ten years and is called the ring problem of (N+1) bodies, or otherwise, the regular polygon problem of (N+1) bodies. In what follows, we give an overview of the scientific work that has been done through all these years, as well as the major results obtained so far.  
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1. INTRODUCTION

The simulation of N-body systems with various models always was at the front line of the research and constituted one of the most attractive issues that excited the scientific interest. Here we deal with an N-body model that has been investigated during the last ten years. It is called the ring problem of (N+1) bodies, or otherwise, the regular polygon problem of (N+1) bodies. The problem studies the motion of a small body S in the force field created by N homogeneous, spherical, major bodies called the primaries. The ν=N-1 of them, have equal masses and are located at the vertices of an imaginary ν-gon. The N-th body has a different mass and is located at the center of mass of this formation (Fig. 1). The problem is characterized by two parameters: the number ν of the peripheral primaries and the mass parameter β which is the ratio of the central mass m0 to a peripheral one named m. A similar geometric formation of the primaries was proposed by Maxwell in 1865 in an essay which won the Adams Prize. Since then, this configuration has often been found to be the center of special scientific interest and many papers have been written aiming to prove its central character and to find homographic solutions, relative equilibria, conditions for stability etc. not only for the simple gravitational case but also for cases that include post-Newtonian potentials. However, the ring problem as a new dynamical system under the description made at the beginning of this paragraph, first appeared in Scheeres’ PhD (Scheeres, 1992) and a little later in a joint paper with Vinh (Scheeres and Vinh, 1993). The problem was considered anew by the author of the present article, who devoted ten years (1999-2009) of scientific research in investigating many of aspects of it. He reformulated the whole problem and he improved the original model by considering not only gravitational forces but also forces coming either from radiation or from post-Newtonian potentials. He also examined some cases where the small body is a tri-axial body or a gyrostat. An extended bibliography is exposed at the end of the paper. The main advantage of the problem is its geometric simplicity and the fact that by changing the basic parameters, one can obtain various already known problems and celestial models, like the Copenhagen case of the restricted three-body problem, as well as the restricted-five body model proposed by Ollöngren (1988) and the restricted four-body problem proposed by Maranhao and Llibre (1999). 
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Fig. 1. The configuration of the ring problem of (N+1) bodies
2. THE GRAVITATIONAL VERSION
2.1 Equations of motion

By using a synodic coordinate system Oxyz (Fig.1) the three-dimensional motion of the small body is described by the following dimensionless second order differential equations (Kalvouridis, 1997),
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where U is the potential function,
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and r0, ri are the distances of body S from the primaries. The above equations admit a Jacobian-type integral of motion
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The gravitational version of the problem is characterized by two parameters: the number ν of the peripheral primaries and the mass parameter β which is the ratio of the central mass m0 to a peripheral one named m. There are ν axes of symmetry that form angles 2π/ν between them. When ν is odd, all the axes of symmetry are equivalent. If ν is even, two groups are formed; each one of them consists of ν/2 equivalent axes.
2.2 Regions of motion in two and three-dimensions
Relation (3) is very helpful in determining the regions where planar (
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) or three-dimensional motions are permitted. Regarding the zero-velocity surfaces C= C(x,y) for the planar motion, the third axis measures the values of the Jacobian constant C and the particle is free to move inside the funnels and beneath the surface (Fig. 2a, 2b). As β increases, the central funnel enlarges and the closed area around P0 on the xy plane enlarges as well (Fig. 2).
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Fig. 2. (a), (b) Networks of zero-velocity curves for ν=7 and β=2 and 10 respectively. (c), (d) zero-velocity surfaces for the same values
2.3 Equilibrium positions
The equilibrium positions are distributed on imaginary circles that are called equilibrium zones and are concentric with the imaginary circle of the primaries (Kalvouridis, 1997). The equilibrium positions on each zone are characterized by the same value of the Jacobian constant C and their number equals the number of the peripheral primaries. In the general case these zones are symbolized with A1, A2, B, C2, C1, as they appear from the center outwards. The number of the zones (5 or 3) for a particular number ν of peripheral primaries depends on a critical value of the mass parameter β=lν. This critical value increases with ν. As β increases beyond lν, the three zones A1, C2 and C1 approach asymptotically the imaginary circle of the primaries. There are no equilibrium positions outside the plane xy of the primaries. All the equilibria are unstable for any ν and β.

2.4 Planar periodic motions
Regarding the planar motions and their stability, we note that there are families that evolve inside the funnels in the 
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diagrams and family orbits outside them (Fig.3). The orbits of the former families belong to satellite or planetary classes of motions, while the orbits of the latter families are either interplanetary motions or orbits around an equilibrium point. In most families, except for those that evolve inside the funnels, the orbits enlarge as C increases and so do their periods. When C decreases, the orbits shrink and the particle comes very close to one or more primaries. The majority of the orbits are unstable and their stability parameter takes very large values. However, stable orbits exist and we can find them among the members of the families that evolve inside the funnels of the 
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diagram (for more details see Kalvouridis 1999a, 1999b, 2001a, 2003, 2008, Croustalloudi and Kalvouridis, 2008). Regarding the influence of the mass parameter, as β increases, then, the characteristic curves are “pushed” towards the imaginary circle of the primaries (Fig.5), the periods of the orbits of the same Jacobian constant increase, while the absolute values of the velocities at t=T (T is the halfperiod) decrease, the part of the orbits described outside the imaginary ring of the peripheral primaries shrinks while the one described inside the ring extends (Psarros and Kalvouridis, 2005). 
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Fig.3. Families of simple periodic orbits for ν=10, β=2
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Fig. 4. (a) Triple periodic orbit for ν=16, β=2, (b) simple periodic orbits around the unstable equilibrium L5A1 for ν=8 and β=2, (c) double symmetric simple periodic orbit for ν=16 and β=2, (d) multiple symmetric orbits for ν=8 and β=2
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Fig.5. Families of simple periodic orbits for ν=16. (a) β=20, (b) β=100
2.5 Zero-velocity surfaces for 3-D motions

Their evolution depends on the order of values of the Jacobian constants of the existing equilibrium zones (Kalvouridis, 2001b). Fig. 6 shows the evolution of the zero-velocity surfaces for a configuration with ν=10, β=2. For these values we obtain the inequality CB>CC1>CC2>CA1> CA2. 
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Fig.6. Evolution of zero-velocity surfaces for ν=10, β=2. (a) C=16 (C>CB), (b) C=CB=15.29176, (c) C=14 (CB>C>CC1),  (d)   C=CC1=13.98642
When
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, for each value of the Jacobian constant C, two kinds of iso-energetic surfaces coexist: a group of ν small, closed surfaces, which surround each individual primary and a much larger surface that surrounds all these closed surfaces (Fig. 6a). The particle is either trapped inside a small inner shell or is free to move outside the large external surface. As C decreases, the internal closed surfaces touch each other (Fig.6b) and later form a torus-like closed surface (Fig.6c). As C decreases even more, the torus-like surface touches the external surface (Fig.6d). For smaller values of C the surface splits in two parts that shrink as C becomes smaller and smaller, until they finally disappear. The points of zones A1 and C1 are the contact points of the internal closed surfaces around the peripheral primaries Pi and the surface that surrounds the central primary P0, or the external shell respectively. The points of zone B are the contact points between the ν internal closed surfaces around the peripheral primaries. At the points of zones A2 and C2 the internal surfaces or the external shell are detached from plane xy respectively. In the permitted regions of the zero-velocity surfaces, the particle realizes its motions. Fig. 7a shows the characteristic curves of 3D periodic motions. These curves start from points of vertical critical stability on the planar families and terminate on different points of the same or different planar families (Hadjifotinou and Kalvouridis 2005; Hadjifotinou et al. 2006). Fig. 7b shows some 3D orbits of the family 7C1 (ν=7, β=2). 
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Fig.7. Three dimensional simple periodic orbits for ν=7, β=2; (a) evolution of the families, (b) orbits of the family 7C1  
3. THE EFFECT OF RADIATION PRESSURE
In this version we assume that one or more primaries are radiation sources and we apply the simplified theory suggested by Radzievski in order to study the effect of radiation pressure on the motion of the particle. The existence of strong radiation sources in the Universe has repeatedly been confirmed from a very early period and the photo-gravitational problems of two or more bodies have attracted much attention during the last decades. The potential function in (1) takes the form (Kalvouridis, 2001c; Kazazakis and Kalvouridis, 2004; Kalvouridis and Hadjifotinou, 2008),
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Therefore, the problem, besides the two parameters ν and β, is determined by N additional parameters, namely the N radiation coefficients b0, b1, b2,.., bν of the N=ν+1 primaries. The symmetry of the created combined field is preserved in three cases; (1) when the central body is a radiation source (whatever the value of the radiation coefficient b0 is), (2) all peripheral bodies are radiation sources and have the same radiation coefficients, (3) all the primaries are radiation sources and the peripheral bodies have the same radiation coefficients. In all these cases the equilibrium points are still arranged on concentric circular zones. Otherwise, the equilibria that belong to various sets are generally reduced as the total radiation increases. However, their stability does not change. For all the cases we have studied, the value for the Jacobian constant C of a particular equilibrium point reduces, as new radiation sources are added to the system. The consequences of the radiation action may be significant when the bodies are strong radiation emitters (
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). We have noted that, as radiation increases, the zero-velocity boundary curves of the (x, C) diagram shift to lower values of C (Fig.8), the funnels formed between them and the asymptotes through the primaries become narrower and the characteristic curves of the families of periodic orbits are either translated towards or away from the origin, or incline with relation to the x-axis (Figs. 9a, 9b). Figs 9c and 9d show the evolution of period (2T) with the Jacobian constant C for the families SX and SY and various cases when ν=7, β=2.
	[image: image29.emf]Diagram (x

0

, C) for 5 cases (ν=7,β=2)

-3

1

5

9

13

-3.4 -2.4 -1.4 -0.4 0.6 1.6 2.6

x

0

1. Gravitational

2. b0=0.5

3. b0b1b2b7=0.5

1

5

4

2

3

4. b0b1b2b3b6b7=0.5

5. All=0.5

C

P

0

P

1


Fig. 8. Zero-velocity curves of the diagram (x, C) for ν=7, β=2 and five cases of radiating primaries
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Fig. 9. (a), (b) variations of the characteristic curves of the families SA and SJ for ν=7, β=2 and various cases, (c), (d)  period (2T) versus C for families SX and SY for various cases when ν=7, β=2
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Fig. 10. Radiation effect on simple periodic orbits for ν=7, β=2, of the families (a) SS, (b) SX
Fig. 10a shows how radiation affects the planetary-type simple periodic orbits of the family SS (ν=7, β=2), described by the particle around the central primary P0. Fig.10b shows the radiation effect on the simple periodic orbits of interplanetary-type of the family SX (Kalvouridis et al. 2008). 
4. A VERSION WITH POST-NEWTONIAN POTENTIALS

4.1Potential function and zero-velocity curves and surfaces

Here we assume that the potential created by the central body P0 is a Manev’s type potential of the form A/r + B/r2, where A and B are constants. For simplicity we shall consider that A=1 and B=eα, where α is the side of the regular polygon. Then the potential function after normalization of the physical quantities, takes the form,
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where a non-Newtonian term appears in the expression of the central body’s potential, and a third parameter e, is added to the two already known parameters of the simple gravitational case. Quantity Δ depends on the three parameters ν, β and e. For example, if ν=3 this quantity equals to 
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When e>0, the results are similar to the ones of the Newtonian case. This means that the form of the networks of the zero-velocity curves, the zero-velocity surfaces and the evolution of the permitted and non-permitted regions of motion, as well as the number of the equilibrium zones and their distribution on the xy-plane are qualitative similar to those of the pure Newtonian case. The most significant effect of parameter e is that, it slightly changes the value of the mass parameter β at which the number of the equilibrium zones changes from five to three. However, when e<0, a “folding” of the “chimney” that surrounds the central primary P0, starts to create (see Figure 11b). As a consequence, a closed area of non permitted motion in the immediate neighborhood of P0 is created. This region is surrounded by another narrow annular region of permitted motion (see Figure 11a). 
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Fig. 11. (a) Network of zero-velocity curves for β=50, e=-0.07, (b) zero-velocity surface for the same values
4.2 Focal points in the (x,C) diagrams 

It has been proved (Kalvouridis, 2004) that in all regular polygon configurations and for Newtonian potentials, all the zero-velocity curves C=C(x) drawn for y=0 which concern configurations with the same number of peripheral primaries but various mass parameters β, pass through two different focal points, the position of which does not depend on the value of this parameter. This property can be extended in the case where post-Newtonian potentials exist. Fig.12a shows the case. Furthermore, there are two more focal points when C=C(x) curves are drawn for a particular value of β but for various values of e (see Fig.12b).
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Fig. 12. (a) Focal points for a given e and various β, (b) focal points for a given β and various e
5. A VERSION WHERE THE SMALL MASS IS A RIGID BODY OR A GYROSTAT

In these versions, the point-like particle S is replaced by a small tri-axial body or a small gyrostat. 
	[image: image42.emf] 




Fig. 13. Three cases of equilibrium positions of a small gyrostat in a Copenhagen configuration (ν=2, β=0)
Under this consideration, we form two sets of equations that described the translational and the rotational motion of S respectively (see for details Kalvouridis and Tsogas 2002, Tsogas et al. 2005). We have studied some classes of stationary solutions of S and their linear stability. Fig. 13 shows some of these attitudes when ν=2, β=0 (Copenhagen case of the restricted three-body problem) and S is an axi-symmetric gyrostat.
6. A SUMMARY OF THE RESEARCH MADE BY OTHER INVESTIGATORS
Goudas (1991) studied the case where the primaries are magnetic dipoles and the small body is a charged particle. Salo and Yoder (1988), Roberts (2000), Bang and Elmabsout (2004) and Vanderbei and Kolemen (2007) investigated the relative equilibria of the primaries in ring configurations with Newtonian potentials. Mioc and Stavinschi (1998, 1999) studied the same issue with post-Newtonian potentials, while Arribas et al. investigated the case where all primaries create generalized central forces. Arribas and Elipe (2004) studied some aspects of the particle’s dynamics when the central primary creates a post-Newtonian potential. Pinotsis (2005) and Barrio et al. (2008, 2009) re-calculated simple periodic orbits in various configurations. Elipe et al. studied the particle motion when the central primary is a prolate rigid body. Bountis and Papadakis (2009) investigated the Sitnikov orbits of the particle, while Papadakis (2009) studied its asymptotic orbits in a general ring configuration. Two very interesting versions of the problem appeared in the last few years. In the first one (Wenzhong et al. 2005), the authors consider kν primaries in k nested regular polygons. In the second variation, the authors consider a solid circular disc, instead of discrete peripheral bodies (Broucke and Elipe, 2005).
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