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Abstract: Free vibration analysis of microscale beams is investigated in this paper. The nonlinear model
is conducted within the context of non-classical continuum mechanics, by introducing a material length
scale parameter. The nonlinear equation of motion is derived by using a combination of the modified
couple stress theory and Hamilton’s principle. Based on this newly devel oped model, calculations have
been performed for microbeams simply supported between two immobile supports. The nonlinear
frequencies of a beam with initial lateral displacement are discussed. It is shown that the size effect is
significant when the ratio of characteristic thickness to internal material length scale parameter is
approximately equal to one, but is diminishing with the increase of the ratio. Our results also indicate that
the nonlinearity has a great effect on the vibration behavior of microscale beams. To attain accurate and
reliable characterization of the vibration properties of microscale beams, therefore, both the
microstructure- dependent parameters and the nonlinearities have to be incorporated in the design of

mi croscal e beam devices and systems.
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1. INTRODUCTION

Miniaturized beams are the core structures widely used in
sensors, actuators, microscopes, MEMS and NEMS [1-4] for
applications ranging from sensing and communications to
energy harvesting, fundamental studies of quantum
mechanical systems, etc. Across these applications, the
characteristic thicknesses of the beams are typicaly on the
order of microns or even sub-microns. As reported in many
papers (e.g., [5-8]), the microscale beams may be made of
metals, polymer, traditional silicon-based materials or
functionally graded materials (FGMs). The design of
microbeams is dominated by several basic requirements. One
of these basic reguirements is to attain mechanical and
vibration properties to match the required functionality of
interest. It is not surprising, therefore, that the literature on
this topic is constantly expanding.

In the past decades, many theoretical studies of microscale
beams were based on the classical continuum theory (see,
eg., [9-13]). In the current work, however, theoretical
analysis will not be conducted within the context of classical
continuum mechanics. Though the classical continuum
models are relevant to some extent, the length scales
associated with material’s microstructure (such as lattice
spacing between individual atoms) are often sufficiently
small to call the applicability of classical continuum models
into question [14]. Indeed, the size dependence of material
deformation behavior in micronscale has been observed
This modified couple stress theory has also been used to
study the dynamic properties (e.g., natural frequencies) of

experimentally in the last two decades. Related work on this
topic appears to have started in the 1990s. Some of the key
contributions in this area were made by Fleck et al. [15], Ma
and Clarke [16], Stolken and Evans [17], Chong and Lam
[18], Lam et al. [19], and McFarland and Colton [20]. The
size dependence phenomenon has been observed in the
materials of either metals or polymers. In these experimental
works, the microscale structures studied may be copper
wires, silver single crystal, nickel beams, or epoxy polymeric
beams. These experimental results certainly demonstrate that
the size dependence is intrinsic to certain materials with
microstructures.

Since beam models based on classical eagticity theory are
not capable of describing the size effects, the nonlocal, strain
gradient and classical couple stress eagticity theories were
used to develop the size-dependent beam models (see, e.g.,
[7,8,13,14,21-33]). Recently, Yang et al. [34] proposed a
modified couple stress theory, in which the congtitutive
equations contain only one single additional internal material
length scale parameter besides two classical material
constants. Owing its advantageous expression, the modified
couple stress (non-classical) theory has attracted many
researchers in the past years. As an example, Park and Gao
[7] have studied the datically mechanical properties of
Bernoulli—Euler cantilever beams by using this non-classical
elagticity theory. The corresponding results were applied to

explain bending test of epoxy polymeric beams successfully.

Euler—Bernoulli microbeams by Kong et al. [35]. In ther
study, two boundary value problems (one for simply
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supported beam and another for cantilevered beam) were
solved and size effect on the natural frequenciesfor these two
kinds of boundary conditions were evaluated. It was found
that the natural frequencies of the mircobeams predicted by
the modified couple stress theory are generally higher than
those predicted by the classical Euler—Bernoulli beam theory.
More recently, Ma et a. [23] further developed a
microstructure-dependent Timoshenko beam model by using
the modified couple stress theory. In their model, both
bending and axial deformations were considered, and the
Poisson effect was incorporated. Of course, this refined
Timoshenko beam model can be easily reduced to the
classical Timoshenko beam modd.

From the literature mentioned above, it can be found that,
although, several microstructure-dependent models have been
initiated to discuss the static and dynamic properties of
microscale beams in the past years, these studies were still
based on linear theories, i.e., nonlinearities in the microbeam
systems were excluded absolutely. As reported in a recent
paper by Kong et al. [35], accurate characterization of the
static and dynamic properties of microstructuresisurgent and
vital for reliable and optimal design of MEMS devices.
Although the linear theories are relevant to some extent, the
effect of nonlinearities on the static and dynamical behaviors
of microbeams may be pronounced and has to be considered
in many situations (e.g., to attain accurate natural frequency
of vibration in order to enable sensing and to match the
frequencies of the signals of interest). Another aspect is that
the linear theories are not capable of predicting the static
configurations when the microbeam undergoes a buckling
instability. This motivates the work presented in this paper.

The objective of the present paper is to establish a nonlinear
non-classical Euler—Bernoulli beam modd for microscale
beams by using the modified couple stress theory. The beam
material is assumed to obey the modified couple stress
theory, as developed by Yang et al. [34]. This new nonlinear
model contains a material length scale parameter and can
capture the size effect. The nonlinear equation of mation will
be derived by using the Hamilton’s principle. The nonlinear
term added, assumed supported between two axialy
immobile supports. Based on the equation of motion derived,
the free vibration of pinned—pinned microbeams will be
studied. It will be shown that the effect of material length
scale parameter and nonlinearity on the vibration frequencies
are significant. The difference between the nonlinear non-
classical resultsand the linear results (both classical and non-
classical) will be quantitatively shown and analyzed.

2. Formulation

The system under consideration is a microscale beam of
length L between two immovable supports, mass density p,
cross-section height h and cross-section width b. The cross-
section of the beam is symmetric (either rectangular or
circular). We will consider the nonlinear vibrations of
microbeams with transverse dimensions ranging from several
micro-meters to hundreds of micro-meters.

It will be useful, later on, to have handy the linear problem of
amicroscale beam. The linear equation of motion based on a
modified couple stress e asticity theory is given by [35]

ﬂW+ﬂW:q(x,t) (D)
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where E isthe Y oung's modulus of elagticity, | isthe moment
of inertia of the cross-section, A isthe cross-sectiona area, G
isaLame's constant (G = E/[2(1 + p)] is also known as the
shear modulus, where p is Poisson’s ratio), £ is a materia
length scale parameter, g(x,t) isatransverseloading, and w(x,
t) is the lateral deflection of the beam; x and t are the axia
coordinate and time, respectively.
Since the derivation of Eq. (1) is based on a refined Euler—
Bernoulli beam theory, the corresponding theoretical model
described is called ‘‘non-classical Euler—Bernoulli beam
mode”. It is immediately found that the above equation has
introduced a material length scale parameter ¢, which
represents the microstructure-dependent effect.
As reported by Sadeghian et a. [36], the choice of
appropriate structural analysis model of the microscale beam
depends on the magnitude of the lateral deflection compared
to the thickness of the beam. The theoretical model described
in Eg. (1) may be an adequate representation for the case that
the deflection is considerably small (e.g., the deflection is
smaller than the thickness of the microbeam). For the case
that the deflection is relatively large (e.g., the deflection is
approximately equal to or larger than the thickness of the
microbeam), bending-stretching coupling terms need to be
taken into account, since the effects of nonlinearity on the
mechanical and vibration properties become observable.

(E1+cAr?)

The nonlinear equation of motion of a microbeam with
immovable ends will be formulated by using the Hamilton’s
principle. According to the modified couple stress theory
[34], the bending strain energy U, of the microbeam is a
function of both the strain (conjugated with stress) and the
curvature (conjugated with couple stress). Then the bending
strain energy in a deformed microbeam is given by [7]
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where the resultant moment M, and the couple moment Y,
are defined, respectively, by

M, = Ac‘? w ZJA &)
Yy = Ac‘f‘kydA 4

In the above two equétions, o, and my, are, respectively,
defined by
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Then Uy, may be rewritten as
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By neglecting the body force and body couple, the work done
by the externally transverse loading q(x, t) may be written as

W = & q(x Hw(x)clx ®)

The kinetic energy of the microbeam is given by
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in which m= pA isthe beam mass of per unit length.
According to the Hamilton’s principle, the dynamic equation
of mation of this beam as well as all possible boundary
conditions can be derived by using the following variationa
equation

dy(K-U,-W)dt=0 (10)
Subgtituting Egs. (7)—9) into Eg. (10), one obtains
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In view of Eg. (11), the nonlinear equation of motion of the
beam in terms of w(x, t) is given by
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and the boundary condltlons are
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It can be seen from Eq. (12) that the deflections of the beam
arerelated to two type of material parameters. one associated
with pA, EA and El asin classica beam model and the other
associated with GAZ. Therefore, the current refined Euler—
Bernoulli beam model based on the modified couple stress
elagticity theory contains one additional interna material
constant besides three classical material parameters. As can
be expected, the presence of ¢ enables us to analyze the size
effect.

Defining the following quantities
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Eq. (12) may be written in the dimensionless form
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Since Eq. (15) is represented in a dimensionless form, the
current non-classical beam model may be used to analyze the
dynamic responses of microbeams, regardiess of the beam
materials or length scales. It may be also mentioned that the
equation of motion, (15), is essentially based on the Euler—
Bernoulli beam assumptions. Like all other analytical models,
therefore, the newly developed beam mode has limitations,
which are contingent upon the applicability of the modified
couple stress theory. Specifically, the microbeam must be
dender so that the Euler—Bernoulli beam assumptions are
applicable. For microbeam with relatively large width (b),
however, the current Euler—Bernoulli beam theory may be
inadequate for predicting the response of microbeams.

In this paper, the microbeam under consideration is assumed
to be pinned—pinned. For such a beam system, the deflection
and moment are zero at both ends. Then the boundary
conditions can be written in the dimensionless form

Th _

(16)

Before closing this section, it should be mentioned that, for
andysis convenience, the beam material is chosen to be
epoxy. Thus, the material constants used here are E = 1.44
GPa and | =1.76 nm [7]. In the following analysis, for

comparison purpose, we will choose a = 30 and two different
values of Poisson’sratio (i.e., i = 0and p = 0.38).

3. Freevibration

In this section, the free vibration of a microscale beam with
both endsimmoveable will be analyzed. It is assumed that the
externa transverse force q(xt) is absent. Based on this
assumption, Eg. (15) becomes
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As aready mentioned in the foregoing, the nonlinearity is
caused by the immoveable ends which are not alowed to
move to any appreciable extent relative to the initial
coordinates of the beam ends. Therefore, the axial inertiamay

be al so neglected.

Theinitid conditions considered in the current work are:
w(L/20

W(L/2,O): %:o (18)

The dimensionless initial conditions given by Eg. (18)
become

h (1/ 2, o) = W =0 (19)
Assume that
h(x.t)=y (x)aft) (20)

where (&) is the characteristic mode of a pinned—pinned
beam and

y (X)=sin(npx) n=123,... (21)
The substitution of Eq. (20) into Eq. (17) leads to
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in which the dimensionless parameter y is given by
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It is worth noting that Eq. (24) is a classical Duffing-type
equation which represents a nonlinear oscillator without
damping. This equation may be solved via various methods,
such as the method of harmonic balance, equivalent
linearization, generalized averaging and multiple scales

method [38]. By multiplying (24) by G and integrating with

respect to time, the following energy balance equation is
obtained

1
4°+q° +§gq4 =H = constant. (26)
The constant H is evaluated from initial conditions.
By assuming initial conditions (19), one has
1
H=w? +§gw‘m‘ax (27)

Putting H into (26) leadsto
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By introducing new parameters y; and y, in the following
way

g
2c/
Such that the differential equation has solutions in terms of

Jacobi dliptic function. Hence, Eq. (28) can be rewritten as
follows:
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Then, assuming =COS] we can obtain Jacobi eliptic
functlon [40] W|th the modulus k, defined by Eq. (29b),
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From the inversion of Eqg. (31), the solution for g can be
obtaion asfollows:

q=cn[K,K] (33)
The period of the function cn[K,K] is 4K and is defined by
using the complete elllptlc integral,

4K_4Q «/1 cZsin’j

Then, the corresponding frequency for this nonlinear problem
for each mode is defined by using the following equation:

1+W,. g
Wnl = 2K

(30)
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(32)

(34)

(35)

4. Numerical Results

Figure 1 plot the nonlinear fundamental frequency ratio
versus dimensionless amplitude curves for beam. Beam
exhibit typical hardening behavior, i.e, the nonlinear
frequency ratio increases as the vibration amplitude is
increased.
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Fig. 1 Nonlinear frequency ratio versus dimensionless amplitude curves for
beams

Fig. 2 shows how frequency ratios, |, predicted by the non-
classical beam theory change with the beam thickness (or
h/¢).
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Fig. 2. The ratio of the non-classical frequency to the linear classical
frequency as a function of h/¢.

Figure 3 displays the phase plane diagrams (q versus @) for
beam.
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Fig. 3. Phase plane diagram for nonclassical microscale beam.

Figure 4 gives dimensionless vibration amplitude as a
function of dimensionlesstime for beams
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Fig. 4. Time history of dimensonless amplitudes for non-classical
microscale beams

Theresults displayed in Fig. 2 are obtained from Eqg. (35), for
non-classical beam model. To illustrate the Poisson effect,
two different values of Poisson’s ratio, i.e, 0 = 0and u =
0.38 are used. It is worth noting that, when h/¢ is
approximately equal to one, the size effect is remarkably
visible.

5. Conclusions

A nonlinear non-classical Euler—Bernoulli beam model with
an energy formulation to study the vibration behavior of
mi croscal e beams on immovabl e ends has been devel oped. In
the present nonlinear model, the nonlinearity associated with
the internal material length scale constant considered. The
analysis is performed within the context of non-classica
continuum mechanics. For the free vibration of a microscale
beam, it is found that the nonlinear frequencies are much
higher than the linear ones. This finding is very useful for
high-performance microresonators in which one of the basic
requirements is to match the frequencies of signals of
interest. Therefore, compared with the linear non-classica
beam model, the nonlinear non-classica model and its
conclusions regarding vibration properties may be more
reliable. The results obtained in this paper highlight the
importance of considering nonlinearity and size effectsin the
proper design of microscale devices and systems such as
biosensors, atomic force microscopes and MEMS.
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