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Abstract: This paper concerns the estimation of rainy celldsiom observed in meteorological radar images
using optical flow method. To characterize and ftethe evolution of rainy clouds in real-time, igsr of

PPI filtered images were collected at the metegiold station of Setif (Algeria). These images @P%512
pixels were collected every 5 minutes by non-cofteradar working at 5.6 GHz. After filtering eclsoef
ground present in radar images, we applied the adetif 'Lucas-Kanade' and another method based on
Gabor filters. In both cases the estimated opficay shows all the moving cells in the considerathge
sequences.
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1. INTRODUCTION

Since several years, the forecasting of rain inghert time
limit was a topic of meteorologist interest. A netW of rain

gauges gives the punctual and direct measuresirofage on
the ground that it is possible to interpolate indesr to

reconstitute the complete rainy field. This openatis not very
reliable when rain presents a large spatial vditgbin this

case, meteorological radars are the only instrusnehich can
finely describe the development of the rainy figldx radius of
several kilometres. The radar equipment represexits cells

with: position, shape, intensity, dimensions anspbldicement
(Meischner, 2005, Sauvageot, 1992). The radar databe
used to detect other sever atmospheric phenomenals as
hail storms and tornados. It is therefore necesgaigdentify

and follow rainstorms in order to define their ¢é&tpries and
intensities. The use of meteorological radars igale because
of the earth relief which produces masque effeatsdegrades
noticeably rain echoes detection and reduces
performance. It is therefore essential to remove ¢hutter to
be able to follow the evolution of the precipitati@choes
(Darricau, 1993).

The motion estimation from an image sequence isl use
several applications. In robotics, it can identfyd anticipate
changes in the position of objects. In video corsgian, it
allows the fullest possible understanding where tdraporal
redundancy of the sequence and information desgrilgin
image using the surrounding images. In meteorologylows

the detection and forecasting of rainy cloud ingigdthose
which are dangerous and predicting their motion({Faindal.,

2009).

The movement, in a sequence of images is visibleutih
changes in spatial distribution of a variable phuttric

between two successive images, such as luminarigbtress,
or reflectivity which is the variable used in metaogical

images. The use of non-linear algorithms becamessacy,
which opened the signal processing and modern mmetties
to the study of such a random phenomenon. In tmgext, we
are interesting in this paper to the detection eximaction of
the velocity of rainfall from radar images usingtioal flow.

Specifically, we will treat the part 'low level' vah provides
local information on the speed as a field of velpciGiven

these objectives, we introduce the database usé#usirstudy
then we will formulate the optical flow equation eds to
calculate the velocity fields in artificial imagesd weather
radar images(Bruno,2001; Neill aad, 2004).

radar

2. DATA BANK

The studied images in this paper were collectedh wit
meteorological radar ASWR 81(Algerian Service Weath
Radar) installed in the city of Maghras in Setif
(36 °11N, 05°25E, altitude 1730 m) in the northtedAlgeria
where they are known as high plateaus. In figuneelpresent
an example of radar image taken in Decembél, 2604 at
17:30 where the radar is in the middle of the pi&tdn this
figure, the fixed echoes reflected from mountaipgear.



Indeed, at the west of Setif we can discern angedrand due P (X, y)is one point of the image and (p) = V (u, v)is

to the presence of regional mountain ranges known &elocity vector at poinp at timet. The components andv are
Djurdjura where the highest elevation correspormisLalla  respectively the velocity alongandy.

Khadidja Mountain (2308 m). At the south and at tiogth of

the radar we can observe a bluish zone correspgndi
respectively to Bibans and Babor ranges. The bdnoéts are
represented in red. The resolution of this imagéHKsn par
pixel in PPI (Plan Position Indicator) represemtatits format

is 512x512 pixels with 16 reflectivity levels. Alson this dda

f , h - —=Z4+0LV =0 2)
gure, we can see rain echoes represented as ai-qua G =~

homogeneous structure whereas the fixed echoescattered

in small cglls of non homogeneou§ intensity. Thppsqssion Where: 3 = {d } is the spatial gradient of

of mountainous echoes that constitute a parasgitakin the &' &

forecasting and the quantification of rain cellsnade by using

a masque method combined to a shape detection.nigtisod Several models have been used to solve the equafion

consists to subtracting in the study image the necasistructed optical flow as the model of translation, the pagtmc model

from images in clear sky, and then remove the wadidell and the nonparametric model. In this study we aierésted in

occupies a small area (Raaf aid 2008). determining the velocity field seen in a sequenteramlar

dBZ  images using the nonparametric differential methods

n Equation (1) lead to the annulment of the intergma
difference moved. Assuming that(x, y, t) is a continuous
function and its time derivative, the assumptiorcafiservation
of the luminance is written by:

_Rain echoes Bl s0 3.2 Differential Method

The differential methods belong to the techniquasmonly
used for the calculation of optical flow in imagegsences.
Their advantages are reductions in the complexify o
calculations commonly used in the matching methatide
increasing the range of measurable displacemehty an be
classified in two: Global methods such as the taphe of
Horn and Schunck and Local as the Lucas-Kanadeoapbr
and that based on Gabor filters. These methodbased on
the equation of the apparent motion (ECMA) issud &gylor
development of the equation of the intenditgx, y, t) given
by(Bainbridge-Smith andl., 1997):

a a a

| +d, +d,t+dt:I A + —dx+—dy+—dt+

(x+dx,y+dy )(><y)5x><(z/yJt o(¢)
(3)

Wheree gives terms of higher order of Taylor development
of first order and tends to 0 whehtends taD.

Fig. 1. Radar image of the region of Setif.

So we get:
3. MOTION ESTIMATION USING OPTICAL FLOW
ul, +vl, +1,=0 (4)
3.1 Optical flow equation Iy, Iy, Iz spatio-temporal derivative of intensity at point

The motion estimation is based on that a pointinstituted P (X, Y)at timet.
a fixed image. It can therefore be matched betwken
consecutive images estimate the motion of the pbinthe
method of optical flow (Baron and Al., 1994; MénzQ03). A
sequence of images can be represented by its heght
function| (x, y, t). The hypothesis of conservation of brightnesd-ucas and Kanade method :
provides that a physical point of the image seqeei@es not  The method proposed by Lucas and Kanade is a local
vary with time, which gives: approach. It is based on the supposition that tigiom is

(P =1 (p +V(p)dt+d) o) uniform over a region of the image or that the cgdtiflow is

To solve this equation by respecting the conditiais
validity two solutions are proposed in this stutlye Lucas-
Kanade method and Gabor filters.



constant ovelQ neighbourhood centred on the pixel that weMethod based on Gabor filters

want to calculate the displacement. We are thesdfmding to
minimize the following functional(Bouguet, 2000):

E=>[0LV(p)+1,]? ()

Q is a window around the point at which you wisld&termine
the scope of the movement.

In this method each calculation is done on a smeltow in

parallel independently of other windows. The sadlotiis to

make an estimate in the sense of least square. dtnixm
notation the solution is:

V =(ATA)ATD (6)
h xllyl Ill
Wt p = L by (D=1

It may happen that the matrA is ill conditioned (almost
zero determinant and therefore not invertible).sTiki because
the pixel is in an area where the luminance intgnsiconstant
on an area where a zero gradient (Problem operind)the
estimate in the sense of least square¥ blecomes aberrant.
We can remedy these problems by using a regulemizat
technique. We can then write:

E=Y [0LV(p)+1,]* +aV? (7)

With o (adjustable) representing the regularity of thieitsan.
This equation is always linear and can yield tofthlewing:

V=(ATA+aJ)"A'b (8
J: identity matrix

The optic flow equation that we developed is valiy if
the displacement is small, so we have to use théti-mu
resolution, which was developed in the algorithmHoirn and
Schunck. On the other hand, it is possible to fritefine the
results at each level of the pyramid minimizing tbep
between two successive frames and
algorithm after moving one of two images accordtogthe
latest calculated field velocity. If the algorithim stable, the
method converges and therefore:

Vl :Vl—l +,7|
with V® =0 etp' =(ATA+ad)*Ah,

9)

If L iterations are necessary to achieve convergehegsfore
the final solution is the last calculated vectoregi by:

v :ZL:V' 10)

Gabor filters are widely used in computer visiohisTsuccess
is due both to their spatial and spectral properie Bruno has
proposed a novel approach with is drawn on theeqifftial
method for local estimation of optical flow from Ba filter
banks [10]. It is based on projection the optidawfequation
(4) into a pixel image on a bank of N Gabor filtéfge obtain
an over determined system Nf equations that allows us to
calculate the two velocity components of the poatsidered.

Assuming that is constant over the filter supporf G
we can write the optical flow equation as (Brun@Q2):

u(ﬂ* Gi)+V(ﬂ* Gi) +ﬂ* Gi =0 i:l...N
x oy

o
The minimization is obtained iteratively by the deaquares
algorithm weighted iterated (MCPI):

(11)

V =argmin > w,o(r,) (12)

With w(x) = is a weighting function and (x) is a

10K
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Euclidean norm.

The choice of the functiom (X) can be done in a wide range of
functions. It must be even defined, positive andusth not
have a single minimum at zero. In addition, for fhection p
(x) minimizes the influence of bad data, it mustdses than the
quadratic function. In the case of a local estimdteis
preferable that the aberrant data be deleted. Schase to use
the M-estimato(Huber, 1981)

4. APPLICATION

The Lucas and Kanade and Gabor algorithm weredeaste3
different sequence images: a cube, taxi and a raiely
(Figures 2.a, 3.a, 4.a and 4.b).

« The Artificial Sequence ‘cube’ consisting of deylaced on
a turntable plateau, the image size is 256 x 246Igi

running again the

» The Artificial Sequence 'taxi' is a street intatson. It is
composed of three cars and a pedestrian moving. tivoe
bottom vehicles moving in opposite directions. Tae turned
the corner in the middle of the street; the imaige & 256 x
190 pixels.

* The sequence of two stratiform cells isolatedrfrionages of
size 64 x 64 pixels taken in December262004 at
17:30(Figure 4.a) and fifteen minute after (Figub@4The first
cell has 2685 kfof surface and 19.44 dBZ of reflectivity.



5. RESULTS AND INTERPRETATIONS the right indicating the direction of developmeftainy clod.
We also note that the estimated motion is almost 2¢ the
5.1 Lucas and Kanade method center of the cell and increases gradually as wmeecoear the

The gradient that gave the best results was caédlilasing the ©d9es, which is logical because the cloud chanigés in
mask [-1 1, -1 1] for a horizontal displacem&nand [-1 -1, 1 15min and. Outside the rain cell the field is cdesed zero.

1] for verticaly. After several trial tests, the best results weré“so’ the si.ze of imgge:s_ used in the sequences @unbeaxi Is
obtained under the following conditions: important is that justifies the use of third-leveyramid.
' Concerning the cell extracted rain weather radsages we

. Tge cube level of the pyramid 3, patch 7 x 7 pixelsused the first level directly given the size of image.
alpha = 10: the velocity field in figure 2.b shown the rotati .
of the plateau. 5.2 Gabor Filter method

We find that the estimated flow shows all the otgec motion
in the three sequences of images. The tuning paeasnef this
algorithm do not differ greatly in all three castss:

. Taxi: level of the pyramid 3, patch 7 x 7 pixelgtea
= 10% Figure 3.b shows three cars moving that bathgeay
moving in opposite directions and white taxi in tenter that
turns on the corner. The movement of the pedesigamot «  Cube (fig. 2.c): K=3, alpha=100=4, {,=0.14 .

detected. - :
+  Taxi(fig. 3.c): K=3, alpha=18, 0=4, £,=0.18 .

. Rainy cell: pyramid level 1 patch of 5 x 5 pixels, Rain cell (fig.4.d): K=1, alpha=1h 0=4, £,=0.14.

alpha = 10 : in Figure 4.c appears vectors almost directed to
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(b): Field mstied by Lucas-Kanade (c): Field estimhdtg Gabor filters
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(a) : Cube Image

Fig. 2 : Optical flow estimated for Cube Image laggh 7x7
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(a) : Taxi Image (b) :Field estimated by Lucas-Kanade (c): Field estimated by Gabor filters

Fig. 3 : Optical flow estimated for Taxi Image batgh 7x7.
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(c): Field estimated by Lucas-Kanade method (d) Field estimated bgh®r filters

Fig. 4 : Optical flow estimated for rainy cell

We also note that the density increases with viloci will have little influence on the velocity fieldsf o
vectors N to reach a step where it does not chadoge, moving objects. Tests on the size of the patch sdow
N = 6. However, the increment of N greatly increase that whenever the window size is increase, an diotic
the computing time. The density also increases with appears which is more and more dense until reacnng
up to a maximum value beyond which we obtain é)ptlmum value. ThUS, if we continue to increase the
smooth velocity field, since the assumption of lgca Window size, the optic flow becomes smooth, ie the
constant optical flow is no longer respected.contour areas will begin to disappear and the meveém
We also note that variations of the frequencyreeate  becomes less clear.

very low this is due to that the global variatiafsthe

considered photometric  variable (brightness o6. CONCLUSIONS

reflectivity) are low-frequency type. In this paper we have presented two techniques for

On setting the parameters for obtaining good result estimating local motion of rainy cells in which the
there is a trade-off between alpha and the number @uality of estimation depends mainly on the rightice
iterations since the higher the number of iteratiGm Of the parameters in each method. In both cases the
large there are more better movement area bousdarie estimated optical flow shows all the objects moving
three sequences of images. We also found that the

In these three examples we have considered a sindigethod based on Gabor filters gives a less dentseabp
iteration loop for refinement: i,d= = 1. Increasind-



flow with a lack of precision in the estimated fietear Resources, Volume 32, Issue 7, July 2009, Pages
the border. This was in contrast with the method of  1043-1049.

Lucas and Kanade. Moreover, it was found that théluber P.(1981). Robust statistics, Wiley(Ed), New
computing time required to run the algorithm of the  York.

latter is much smaller than that of the Gaborrfilte Meischner, A.(2005). Weather radar: principles and
advanced applications. Springer.
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