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Abstract: In this paper we study the Riemannian convexity of energy functionals connected
to the volumetric energy and the kinetic energy. Some of the Lagrangians we discuss about
have an interesting origin: they are obtained when considering Euler-Lagrange prolongations of
a PDE system of order one, such that, the solutions of this system are ultra-potential maps. An
important result consists in proving that these geometrical functionals are always invex, while
their convexity is restricted by the geometry of the underlying manifolds.
Section 1 contains some historical and bibliographical notes. Section 2 studies the volumetric
energy, the kinetic energy and least squares type energies. Section 3 uses the geodesic
deformations to study the Riemannian convexity of functionals. Section 4 analyses some convex
functions generated by convex functionals. Section 5 proves the Riemannian invexity of some
geometrical energies. Section 6 contains open problems regarding thin-plate spline energy, pairs
of type (Lagrangian, Hamiltonian) and energy-momentum tensor field.

Keywords: Energy functional; volumetric energy; pairing map; invexity; Riemannian convexity.
Mathematics Subject Classification (2000): 52A41; 53C21.

1. INTRODUCTION

Surely the theory of minimal submanifolds [2]-[4] and the
theory of harmonic maps [1] are amongst the simplest and
yet general intrinsic variational problems of Riemannian
geometry. Being involved in the subject, our research
group in University Politehnica of Bucharest changed
recently the direction of research, from static variational
calculus to optimal dynamics, formulating and studying
multitime optimal controlled problems whose solutions
are minimal submanifolds or harmonic (potential) maps
(see [13]-[24]). This direction gives new interpretations
and geometric descriptions of the solutions and creates
generalizations. Another dynamic approach of minimal
submanifolds appears in the papers [6], [8].

This paper provides a general principle how to define en-
ergies for manifold-valued mappings between Riemannian
manifolds and for least squares approximations of maps. It
has three roots: minimal submanifolds theory, harmonic or
potential maps theory and geometric dynamics [11], [12],
[17], [21], [22].

The first idea, in Section 2, is to define and study the
smallest volumetric energy submanifolds. Passing from the
volume functional to the volumetric energy has practical
reasons, since it refers to a smooth Lagrangian which
is important in the areas of molecular engineering and
materials sciences due to anticipated nanotechnology ap-
plications. The second idea, refers to the kinetic energies
and some energy functionals used to extend PDE systems
of order one to Euler-Lagrange PDE systems of order two.
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The idea of considering Euler-Lagrange prolongations of
PDE systems of first order was announced in [9], [11]
and analyzed afterwords in ([7], [11]-[24]) . We reconsider
again this problem, giving original proofs. Moreover, we
also consider a new extension and we prove that, there are
certain geometric configurations such that the solutions of
the initial PDE system to minimize the total energy.

Section 3 gives important results regarding the Rieman-
nian convexity of functionals based on geodesic deforma-
tions. A method to obtain Riemannian convex functions
using Riemannian convex energies is derived in Section
4 (see also [5], [10]). Section 5 defines and studies the
invexity of the volumetric and kinetic energy functionals
relative to the Riemannian structures of the involved man-
ifolds. The invexity proves a strong correlation between the
convex nature of the Lagrangian and the convexity of the
action itself.

2. ENERGIES ON RIEMANNIAN MANIFOLDS

In this section, we use a compact m-dimensional Rieman-
nian manifold (N,h) and an n-dimensional Riemannian
manifold (M, g).

Lemma 1. Let M1 and M2 be two differentiable manifolds.
If T ∈ T 0

p (M2) is a tensor field on M2, x : M1 → M2 is
a differentiable map and ϕ : M1 × (−δ, δ) → M2 is a
deformation of x(·), then

d

dε
ϕ∗εT |ε=0 = x∗(Y (T )), (1)

where ϕε : M1 → M2, ϕε(t) = ϕ(t, ε), Y = ϕ∗
∂
∂ε and

Y (T ) denotes the Lie derivative of the tensor field T with
respect to the vector field Y .



In particular, the previous result is valid for differential
forms, too.

Lemma 2. With the same hypotheses as above, the vector
fields Y = ϕ∗

∂
∂ε and Zγ = ϕ∗

∂
∂tγ satisfy the relations

[Y,Zγ ] ◦ x(·) = 0, ∀γ ∈ 1,m. (2)

Proof. We can interpret the domain of ϕ as a product
manifold. Therefore

[Y,Zγ ]◦x(·) = [ϕ∗
∂

∂ε
, ϕ∗

∂

∂tγ
]◦x(·) = ϕ∗[

∂

∂ε
,
∂

∂tγ
]|ε=0 = 0.

2

Remark The immediate consequence of the previous two
results is that
d

dε
[ϕ∗εT ]α1...αp(t)|ε=0 = Y (T (Zα1

, ..., Zαp))(x(t)), ∀t ∈M1.

The most important geometrical functionals, that we use
in this paper, are contained in the next two definitions.

Definition Let x : N →M be a fixed m-sheet.

1) The multiple integral

J [x(·)] =
1

2

∫
N

(det(x∗g))(t)dt (3)

is called the volumetric energy of the submanifold map x(·).
2) The multiple integral

J [x(·)] =
1

2

∫
N

Trh(x∗g)(t)
√
h(t)dt (4)

is called the kinetic energy of the submanifold map x(·).
New important energies are used to build Euler-Lagrange
prolongations of a PDE system of order one or least
squares approximations of maps (see [7], [11], [12], [17],
[21]). To describe them, we start with a distinguished
tensor field X = Xi

α(t, x) ∂
∂xi ⊗ dt

α on N ×M , satisfying
the complete integrability conditions

∂Xi
α

∂tβ
+
∂Xi

α

∂xj
Xj
β =

∂Xi
β

∂tα
+
∂Xi

β

∂xj
Xj
α,

and we consider the PDE system of order one

∂xi

∂tα
(t) = Xi

α(t, x(t)), (5)

where x(·) denotes an m-sheet, that is, x : N →M .

From now on, we treat N and M as the horizontal,
respectively the vertical components of N × M and we
identify the lifts of vector fields with the original vector
fields, using the notations U, V,..., for the horizontal ones,
and Y,Z,..., for the vertical ones. We also denote by ∇ the
Levi-Civita connection on N ×M . We introduce a (1,2)-
tensor field

F : X (N)×X (M)→ X (M),

g(F (U)(Y ), Z) = g(∇Y (X(U)), Z)− g(∇Z(X(U)), Y ),
(6)

∀U ∈ X (N), ∀Y,Z ∈ X (M). If x(·) is a solution of the
PDE system (5), we introduce the map

x : N → N ×M, x(t) = (t, x(t)).

Our purpose is to extend the system (5) to a PDE system
of order two representing the Euler-Lagrange equations
associated to a suitable action. The first step is to consider

the PDEs (5) as a relation between tensor fields along x(·)
on N ×M , that is

x∗ ◦ x(·) = X ◦ x(·),
where x∗ is the differential of the map x(·). If U ∈ X (N),
then x∗(U) = (U, x∗(U)) and when we differentiate the
previous relation with respect to U , we obtain

0 = g(∇U [(x∗ −X)(V )], Y )− g((x∗ −X)(∇UV ), Y )

+g(∇x∗Ux∗V, Y )− g(F (V )(x∗U), Y )

−g(∇Y (X(V )), x∗U). (7)

Successively, we modify the last two terms in the PDE
system (7), obtaining three extensions:

0 = g(∇U [(x∗ −X)(V )], Y )− g((x∗ −X)(∇UV ), Y )

+g(∇x∗Ux∗V, Y )− g(F (V )(x∗U), Y )

−g(∇Y (X(V )), X(U)); (8)

0 = g(∇U [(x∗ −X)(V )], Y )− g((x∗ −X)(∇UV ), Y )

+g(∇x∗Ux∗V, Y )− g(F (V )(X(U)), Y )

−g(∇Y (X(V )), X(U)); (9)

0 = g(∇U [(x∗ −X)(V )], Y )− g((x∗ −X)(∇UV ), Y )

+g(∇x∗Ux∗V, Y )− g(F (V )(X(U)), Y )

−g(∇Y (X(V )), x∗(U)). (10)

Let E denote the set of m-sheets from N to M and
J : E → IR, x(·) → J [x(·)] be an associated functional.
If x(·) ∈ E and ϕ : N × (−δ, δ) → M is a deformation of
x(·), let Y ∈ Xx(·)(M) be the infinitesimal deformation of
ϕ along x(·).
Definition The operator

dJx(·) : Xx(·)(M)→ IR, dJx(·)[Y ] =
d

dε
J [ϕ(·, ε)]|ε=0

is called the differential of the functional J at x(·).
Theorem 3. The solutions of the PDE system (8) are
critical points for the functional

J [x(·)] =
1

2

∫
N

hαβ(t)gij(x(t))[xiα(t)−Xi
α(t, x(t))]

[xjβ(t)−Xj
β(t, x(t))]

√
h(t)dt. (11)

Proof. If ϕ : N × (−δ, δ) → M is a deformation of x(·),
then ϕ : N × (−δ, δ) → N ×M, ϕ(t, ε) = (t, ϕ(t, ε)) is a
deformation of x and it follows that

Y = ϕ∗
∂

∂ε
= (0, ϕ∗

∂

∂ε
) = (0, Y (ϕ(t, ε))),

that is , Y can be identified with the vector field tangent
to the deformation ϕ on M . We also consider the vector
fields

Zα = ϕ∗
∂

∂tα

and

Zα = ϕ∗
∂

∂tα
= (∂α, Zα).

If we take U = ∂α, V = ∂β and Y = ∂i in (8), then we
obtain



0 = g(∇∂α(Zβ −Xβ), ∂i)−Hγ
αβg(Zγ −Xγ , ∂i)

+ g(∇Zα(Zβ −Xβ), ∂i) + g(∇∂iXβ , Zα −Xα).

Now, since the critical points of the functional J satisfy
the condition dJx(·)[Y ] = 0, ∀Y ∈ Xx(·)(M), we need to
compute this differential. Using Lemma (1) and Lemma
(2) and the Remark derived from them, we obtain

dJx(·)[Y ] =
1

2

d

dε

∫
N

hαβ
√
h[(x∗g)αβ − 2x∗(g(·, Xβ))α

+ g(Xα, Xβ) ◦ x]dt|ε=0

=
1

2

∫
N

hαβ
√
h[Y (g(Zα, Zβ))− 2Y (g(Zα, Xβ))

+ Y (g(Xα, Xβ))]dt

=
1

2

∫
N

hαβ
√
h[Y (g(Zα −Xα, Zβ −Xβ))]dt

=

∫
N

hαβ
√
h[g(∇Y (Zα −Xα), Zβ −Xβ)]dt

=

∫
N

hαβ
√
h[−g(∇YXα, Zβ −Xβ)

+ g(∇ZαY, Zβ −Xβ)]dt

=

∫
N

hαβ
√
h[−g(∇YXα, Zβ −Xβ)

+Dα(g(Y,Zβ −Xβ))− g(Y,∇Zα(Zβ −Xβ))

− g(Y,∇∂α(Zβ −Xβ))]dt

=

∫
N

{hαβ
√
h[−g(∇YXα, Zβ −Xβ)

− g(Y,∇Zα(Zβ −Xβ))− g(Y,∇∂α(Zβ −Xβ)]

+Dα[hαβ
√
hg(Y,Zβ −Xβ)]

−Dα(hαβ
√
h)g(Y, Zβ −Xβ)}dt

=

∫
N

hαβ
√
h[−g(∇YXα, Zβ −Xβ)

− g(Y,∇Zα(Zβ −Xβ))− g(Y,∇∂α(Zβ −Xβ))

+Hγ
αβg(Y,Zγ −Xγ)]dt = 0, ∀Y ∈ Xx(·)(M).

Therefore, the Euler-Lagrange PDEs write

0 = hαβ [g(∇∂iXα, Zβ −Xβ) + g(∂i,∇∂α(Zβ −Xβ))

+ g(∂i,∇Zα(Zβ −Xβ))−Hγ
αβg(∂i, Zγ −Xγ)].

2

Remark 1) If the complete integrability conditions of the
PDE system (5) are not satisfied (i.e., the system has
no solution), then the Euler-Lagrange PDEs (8) are not
prolongations.

2) The expression of the functional in Theorem (3) sug-
gests us the idea of considering a similar multiple integral
defined using the determinant, that is, a volumetric energy

J [x(·)] =
1

2

∫
N

det(g̃αβ(t))dt, (12)

where

g̃αβ(t) = gij(x(t))[xiα(t)−Xi
α(t, x(t))][xjβ(t)−Xj

β(t, x(t))].

Theorem 4. If N is an one-dimensional or a two-dimensio-
nal compact manifold (i.e., m = 1 or m = 2), then there
are two Riemannian structures, h on N and g on M , and

a family of potential maps Vαβ = Vαβ(t, x) on N×M such
that

(1) gradg(Vαβ) = [∇∂α+XαX](∂β), ∀α, β = 1,m and
(2) the solutions of the extended system (9) are critical

points for the functional

J [x(·)] =

∫
N

hαβ(t)[
1

2
gij(x(t))xiα(t)xjβ(t)

+ Vαβ(t, x(t))]
√
h(t)dt.

Proof. For the first statement of the theorem, we remark
that we need to have solutions for a PDE system of

first order with n(n+1)
2 + m(m+1)

2 +m2 variables and m2n
conditions. If m = 1 or m = 2, then the number of the
variables exceeds the number of constraints, therefore we
have solutions. Otherwise, we have to give inferior limits
for n; for example, if m = 3, then the dimension n of the
manifold M must be at least 15.

Rewriting the second extension for U = ∂α, V = ∂β ,
Y = ∂i, we obtain

0 = g(∇∂α(Zβ −Xβ), ∂i)−Hγ
αβg(Zγ −Xγ , ∂i)

+ g(∇ZαZβ , ∂i)− g(∇XαXβ , ∂i).

On the other side,

dJx(·)[Y ] =

∫
N

hαβ
√
h[g(∇Y Zα, Zβ) + g(gradVαβ , Y )]dt

=

∫
N

Dα[hαβ
√
hg(Y, Zβ)] + hαβ

√
h[Hγ

αβg(Y, Zγ)

− g(Y,∇∂αZβ)− g(Y,∇ZαZβ) + g(∇∂αXβ , Y )

−Hγ
αβg(Y,Xγ) + g(∇XαXβ , Y )]dt

=

∫
N

hαβ
√
h[Hγ

αβg(Y, Zγ)− g(Y,∇∂αZβ)

− g(Y,∇ZαZβ) + g(∇∂αXβ , Y )−Hγ
αβg(Y,Xγ)

+ g(∇XαXβ , Y )]dt, ∀Y ∈ X (M).

Consequently, the Euler-Lagrange PDEs are

0 = hαβ [g(∂i,∇∂α(Zβ −Xβ))−Hγ
αβg(∂i, (Zγ −Xγ))

+ g(∂i,∇ZαZβ)− g(∂i,∇XαXβ)].

2

Open problem Find a Lagrangian such that the Euler-
Lagrange equations to be obtained by considering the trace
of the expression (10) written in local coordinates:

0 = hαβ [g(∇∂α(Zβ −Xβ), ∂i)−Hγ
αβg(Zγ −Xγ , ∂i)

+ g(∇ZαZβ , ∂i)− g(∇XαXβ , ∂i)− g(∇∂iXβ , Zα −Xα)].

3. RIEMANNIAN CONVEXITY OF ENERGY
FUNCTIONALS

The theory in this Section extends some ideas, from
functions to functionals, in the Riemannian language of
the paper [10]. For that we need the geodesic deformation
map.



Definition A deformation map ϕ : N × [0, 1] → M is
called geodesic deformation if ϕ(t, ·) is a geodesic in (M, g),
for each t ∈ N .

Definition A subset F ⊂ E is called totally convex if,
for all pairs of m-sheets x(·), y(·) ∈ F and all geodesic
deformations ϕ : N × [0, 1]→ M, ϕ(·, 0) = x(·), ϕ(·, 1) =
y(·), we have

ϕ(·, ε) ∈ F, ∀ε ∈ [0, 1].

Definition Let F ⊂ E be a totally convex subset of m-
sheets. A functional J : F → IR is called Riemannian
convex if

J [ϕ(·, ε)] ≤ (1− ε)J [x(·)] + εJ [y(·)], (13)

for all x(·) and y(·) in F , for all geodesic deformations
ϕ : N × [0, 1] → M connecting x(·) and y(·) and for all
ε ∈ [0, 1].

Definition The functional J is called Riemannian strictly
convex if

J [ϕ(·, ε)] < (1− ε)J [x(·)] + εJ [y(·)], (14)

for all x(·), y(·), ϕ as above, x(·) 6= y(·) and ε ∈ (0, 1).

Lemma 5. The functional J : F → IR is convex (strictly
convex) iff, for each geodesic deformation ϕ : N × [0, 1]→
M lying in F , the function

Jϕ : [0, 1]→ IR, Jϕ(ε) = J [ϕ(·, ε)]
is convex (strictly convex) on the interval [0, 1].

3.1 Riemannian convexity of volumetric energy functional

Let J : E → IR be the volumetric energy functional,
x(·) ∈ E, ϕ : N × [0, 1] → M be a geodesic deformation

of the map x(·) and Y = ∂ϕ
∂ε be the vector field tangent

to this geodesic deformation. Moreover, we consider the
family of vector fields Zα = ϕ∗

∂
∂tα and an orthonormal

frame field {E1, ..., Em} on X (x(N)).

Lemma 6. If the bilinear form

Ωx(·) = (x∗g)αβHess(g(Zα, Zβ))

is positive semidefinite on Xx(·)(M) and if

[

m∑
α=1

Y (g)(Eα, Eα)]2 −
m∑

α,β=1

[Y (g)(Eα, Eβ)]2 ≥ 0, (15)

∀Y ∈ Xx(·)(M), then the volumetric energy functional J
is Riemannian convex at x(·). If Ωx(·) is positive definite,
then J is strictly convex at x(·).

Proof. We consider Jϕ : [0, 1] → IR, Jϕ(ε) = J [ϕ(·, ε)].
Then J is Riemannian convex at x(·) iff

d2Jϕ
dε2 |ε=0 ≥ 0.

Furthermore, if
d2Jϕ
dε2 |ε=0 > 0, then J is strictly convex at

x(·). By direct computation we have

d2ϕ

dε2
(0) =

1

2

∫
N

det(x∗g){[(x∗g)αβ(x∗g)µν

− (x∗g)αµ(x∗g)βν ] · Y (g(Zα, Zβ))Y (g(Zµ, Zν))

+ (x∗g)αβ [Y (Y (g(Zα, Zβ)))]}dt

The hypotheses ensure us that the first term is positive
semidefinite. Therefore

d2ϕ

dε2
(0)≥ 1

2

∫
N

det(x∗g)(x∗g)αβHess(g(Zα, Zβ))(Y, Y )dt

=
1

2

∫
N

det(x∗g)Ωx(·)(Y, Y )(x(t))dt

2

Remark If N is an interval and x : N → M is a
differentiable curve, the relation (15) is naturally satisfied.

Theorem 7. If the induced tensor field

RY ∈ T 0
2 (M), RY (Z,W ) = R(Y,Z, Y,W )

is negative semidefinite and Y (g) satisfies the relation (15),
∀Y ∈ X (M), then the volumetric energy functional is
Riemannian convex at x(·).

Proof. For x(·) ∈ E, we consider the family of vector
fields Zα = ϕ∗

∂
∂tα , with ϕ a geodesic deformation of x(·).

If Y ∈ X (M) is the vector field tangent to this geodesic
deformation, then

Hess(g(Zα, Zβ))(Y, Y ) = Y (Y (g(Zα, Zβ)))

= g(∇Y∇Y Zα, Zβ)+2g(∇Y Zα,∇Y Zβ)+g(Zα,∇Y∇Y Zβ).

On the other hand, since [Y, Zα] = 0, ∀α ∈ 1,m and
∇Y Y = 0, it follows

g(∇Y∇Y Zα, Zβ) = −R(Zβ , Y, Zα, Y ),

and hence

Hess(g(Zα, Zβ))(Y, Y ) =−2R(Zβ , Y, Zα, Y )

+ 2g(∇Y Zα,∇Y Zβ).

We have

(x∗g)αβR(Zβ , Y, Zα, Y ) ◦ x = Tr(x∗RY ) ≤ 0

and

(x∗g)αβg(∇Y Zα,∇Y Zβ) ◦ x= (x∗g)αβg(∇ZαY,∇ZβY ) ◦ x
= Tr(x∗ΩY ),

where ΩY = g(∇Y,∇Y ) and we get

Ωx(·)(Y, Y ) ◦ x = −2Tr(x∗RY ) + 2Tr(x∗ΩY ).

Proving the fact that ΩY is positive semidefinite, ∀Y ∈
X (M) is the last step. Indeed,

ΩY (Z,Z) = g(∇ZY,∇ZY ) = ‖∇ZY ‖2 ≥ 0

and, since RY ≤ 0 it follows that Ωx(·) is positive semidef-
inite along x(·) and J is a convex functional. 2

3.2 Riemannian convexity of kinetic energy functional

Lemma 8. If the bilinear form

Ωx(·) = hαβHess(g(Zα, Zβ))

is positive semidefinite on Xx(·)(M), then the kinetic

energy functional J is Riemannian convex at x(·). If Ωx(·)
is positive definite, then J is strictly convex at x(·).

Proof. Similar arguments as in Lemma (6). 2

Theorem 9. If the tensor field RY is negative semidefinite,
∀Y ∈ X (M), then the kinetic energy functional J : E →
IR, J [x(·)] = 1

2

∫
N
Trh(x∗g)(t)

√
h(t)dt is convex.



Proof. Again, we obtain

Hess(g(Zα, Zβ))(Y, Y ) =−2R(Zβ , Y, Zα, Y )

+ 2g(∇Y Zα,∇Y Zβ),

and

Ωx(·)(Y, Y )(x(t)) = −2Trh(x∗RY ) + 2Trh(x∗ΩY ),

with −RY and ΩY denoting two positive semidefinite
bilinear forms. Therefore, J is a convex functional. 2

4. CONVEX FUNCTIONS GENERATED BY
CONVEX FUNCTIONALS

The following theorem gives us a method for creating
convex functions on a complete Riemannian manifold
(M, g) using convex functionals (see also [10]). Let us
consider N ⊂ Rm, t0 and t1 two fixed points in N ,
E = {Φ : N → M | Φ is an m-sheet} and J : E → IR
a functional. If x0 ∈M is a fixed point, let

Γx = {Φ ∈ E| Φ(t0) = x0,Φ(t1) = x}.
Theorem 10. If J : E → IR is a convex functional, then

f : M → IR, f(x) = inf
Φ∈Γx

J [Φ]

is a Riemannian convex function on M .

Proof. Let us consider x, y ∈ M and ψ : [0, 1] → M
a geodesic such that ψ(0) = x and ψ(1) = y. We also
consider the set

Γ = {ϕ : N × [0, 1]→M | ϕ(t, ·) geodesic, ∀t ∈ N,
ϕ(t0, ·) = x0, ϕ(t1, 0) = x, ϕ(t1, 1) = y}.

We have

f(ψ(ε)) = inf
Φ∈Γψ(ε)

J [Φ] = inf
ϕ∈Γ,ϕ(t1,·)=ψ(·)

J [ϕ(·, ε)]

≤ (1− ε) inf
ϕ
J [ϕ(·, 0)] + ε inf

ϕ
J [ϕ(·, 1)]

= (1− ε) inf
Φ∈Γx

J [Φ] + ε inf
Φ∈Γy

J [Φ]

= (1− ε)f(x) + εf(y).

Therefore, f is a convex function. 2

In the following we give an example, based on the convex-
ity of the volumetric energy functional.

Let (M, g) be a complete Riemannian manifold and x0 ∈
M be a fixed point. If RX is negative semidefinite on M ,
∀X ∈ X (M), then f : M → IR, f(x) = d2(x0, x) is
a convex function (a direct prove can be found in [10]).
We prove this statement using the previous Theorem. We
consider N = [a, b] and the ”volumetric” energy functional
J . Then,

f(x) = inf
γ∈Γx

1

2

∫ b

a

g(γ̇(t), γ̇(t))dt = inf
γ∈Γx

J [γ].

Since J is a convex functional it follows that f(x) =
d2(x0, x) is a convex function.

5. INVEXITY OF ENERGIES

This Section extends some ideas from functions (see [5]) to
functionals. Let J1(N,M) denote the jet bundle associated
to N and M . A differentiable function L on J1(N,M) is

called Lagrangian and the functional defined by multiple
integral

J : E → IR, J [x(·)] =

∫
N

L(tα, xi(t),
∂xi

∂tα
(t))dt

is the action associated to L. If x(·) ∈ E, we denote
by Φ : N → J1(N,M) the submanifold map Φ(t) =

(tα, xi(t), ∂x
i

∂tα (t)) and we substitute J [x(·)] with J [Φ]. We
also denote by F the set off all these submanifold maps.

Definition A vectorial map

η : F × F → X (J1(N,M)), η(Ψ,Φ) ∈ XΦ(J1(N,M))
(16)

is called pairing map on F .

Remark A more refined concept of invexity can be ob-
tained if we use pairing maps η defined by

η(Ψ,Φ)(t) = (0, ηi(t, xi(t), yi(t), xiγ(t), yiγ(t)),

Dα[ηi(t, xj(t), yj(t), xjσ(t), yjσ(t))]),
(17)

where Dα denotes the total derivative with respect to tα.

Example If Φ ∈ F and VΦ = {Ψ ∈ F | Ψ(t) ∈ VΦ(t), ∀t ∈
N}, where VΦ(t) is a neighborhood of Φ(t) such that

expΦ(t) : TΦ(t)J
1(N,M)→ VΦ(t) is a diffeomorphism, then

we consider the map

η(Φ) : VΦ → XΦ(J1(N,M)), η(Φ)(Ψ)(t) = exp−1
Φ(t)(Ψ(t)).

(18)

Furthermore, we denote by η0 a pairing map satisfying

η0(Ψ,Φ) = η(Φ)(Ψ), ∀Ψ ∈ VΦ. (19)

If η : F × F → X (J1(N,M)) is a pairing map and
Φ,Ψ ∈ F , we consider γΨΦη : N × (−δ, δ) → J1(N,M),
[0, 1] ⊂ (−δ, δ), a geodesic deformation satisfying

γΨΦη(t, 0) = Φ(t), ∀t ∈ N
and

∂γΨΦη

∂ε
(t, 0) = η(Ψ,Φ)(t), ∀t ∈ N.

Definition Let η : F × F → X (J1(N,M)) be a pairing
map on F . A functional J : F → IR is called η-convex at
Φ ∈ F if

J [Ψ]− J [Φ] ≥ dJ(Φ)[η(Ψ,Φ)], ∀Ψ ∈ F. (20)

The functional J is called strictly η-convex at Φ ∈ F if

J [Ψ]− J [Φ] > dJ(Φ)[η(Ψ,Φ)], ∀Ψ ∈ F,Ψ 6= Φ. (21)

Definition The functional J is called invex if there is a
pairing map η : F × F → X (J1(N,M)) such that J is
η-convex.

Remark When taking η = η0, the η-convexity is in fact
the Riemannian convexity from the previous sections.

Theorem 11. A functional J : F → IR is invex iff all its
critical points are global minimum points.

Theorem 12. If the Lagrangian L is an invex function on
J1(N,M), then the action J is an invex functional.

5.1 The volumetric energy functional

Let N be a compact m-dimensional Riemannian man-
ifold with local coordinates (t1, ..., tm), let (M, g) be a
complete n-dimensional Riemannian manifold with local



coordinates (x1, ..., xn) and E be the set of all submanifold
maps from N to M .

We have already proved that, in additional hypotheses
concerning the Riemannian structure g, the volumetric
energy is Riemannian η0-convex. The next Theorem elim-
inates this supplementary condition and ensures us about
the invexity of this functional.

Theorem 13. The volumetric energy functional is invex.

Proof. We introduce the following differentiable functions
on J1(N,M):

gαβ(tγ , xi, xiγ) = gij(x)xiαx
j
β ; g(tγ , xi, xiγ) = det(gαβ).

The Lagrangian corresponding to the volumetric energy
functional is

L(tγ , xi, xiγ) =
1

2
g(tγ , xi, xiγ)

and

Crit L = Crit g = {(t, x, 0)| t ∈ N, x ∈M},
and, because all these critical points are also minimum
points, it follows that the Lagrangian is invex and, conse-
quently, the functional J is invex.

5.2 The kinetic energy functional

In this subsection, we need a Riemannian metric h on N .
Same as before, the kinetic energy is η0-convex, when the
bilinear form RY is negative semidefinite.

Theorem 14. The kinetic energy functional is invex.

Proof. The Lagrangian (the energy density) associated to
this functional is

L(tγ , xi, xiγ) =
1

2
hαβ(t)gij(x)xiαx

j
β

and
Crit L = {(t, x, 0)| t ∈ N, x ∈M}.

Since all the critical points of L are also minimum points
it follows that L is an invex Lagrangian and J is an invex
functional.

5.3 Invexity of least squares Lagrangian

In the first chapter, we obtained some new functionals
(deformations of the volumetric and kinetic energy func-
tionals), when we considered Euler-Lagrange prolonga-
tions for a PDE system of first order (see [7], [9]-[24]).
Let X = Xi

α(t, x) ∂
∂xi ⊗ dt

α be a distinguished tensor field
on N ×M , satisfying the integrability conditions

∂Xi
α

∂tβ
+
∂Xi

α

∂xj
Xj
β =

∂Xi
β

∂tα
+
∂Xi

β

∂xj
Xj
α,

and we consider the PDE system of order one

∂xi

∂tα
(t) = Xi

α(t, x(t)),

where x(·) denotes an m-sheet, that is, x : N → M . We
also introduce the functionals

JX , JX : E → IR,

JX [x(·)] =
1

2

∫
N

det(g̃αβ(t))dt,

where

g̃αβ(t) = gij(x(t))[xiα(t)−Xi
α(t, x(t))][(xjβ(t)−Xj

β(t, x(t))]

and

JX [x(·)] =
1

2

∫
N

hαβ(t)g̃αβ(t)
√
h(t)dt.

Theorem 15. The functionals JX and JX are invex.

Proof. We consider the vector field

T ∈ X (J1(N,M)), T = [xiα −Xi
α(t, x)]

∂

∂xiα
.

If L = 1
2

√
h(t)hαβ(t)gij(x)(xiα −Xi

α(t, x))(xjβ −X
j
β(t, x))

is the Lagrangian corresponding to JX , then L can be also
written as

L(tγ , xi, xiγ) =
1

2
G(T, T )

√
h ≥ 0,

where G = h + g + h−1 ⊗ g is the Riemannian metric
induced by h and g on J1(N,M).

Crit L = {(t, x,Xi
α)| t ∈ N, x ∈M}

and, since all this points are global minimum points it
follows that JX is an invex functional.

If we consider now the family of vector fields

Tα ∈ X (J1(N,M)), Tα = [xiα −Xi
α(t, x)]

∂

∂xi
,

then the Lagrangian L associated to the functional JX
writes

L(tγ , xi, xiγ) =
1

2
det(G(Tα, Tβ)) ≥ 0.

The set of critical points of L is

Crit L = {(t, x,Xi
α)| t ∈ N, x ∈M}

and again, they are minimum points and the functional is
invex.

6. OPEN PROBLEMS

6.1 Thin-plate spline energy

Let x = (xi) : N →M, t→ x(t) and

(Hessx)iαγ =
∂2xi

∂tα∂tγ
− Γλαγ(t)xiλ + Γijk(x)xjαx

k
γ .

The map x converts geodesics of (N,h) into geodesics of
(M, g) if and only if (Hessx)iαγ = 0. Analyze the extremals
of the second order Lagrangian

L =
1

2
hαβ(t)hγδ(t)gij(x)(Hessx)iαγ(Hessx)jβδ,

which reduces to the thin-plate spline energy in the Eu-
clidean case.

6.2 Pairs of type (Lagrangian, Hamiltonian)

Let L = L(t, x, xα)) be a Lagrangian or a kinetic potential.

If the equations pαi =
∂L

∂xiα
(t, x, xα) defines an implicit

bijection xα → pα, then the formula

H = xiα
∂L

∂xiα
− L (21)



represents a duality between a Lagrangian and a Hamilto-
nian, and produces a duality between the Euler-Lagrange
PDEs

∂L

∂xi
−Dα

∂L

∂xiα
= 0

and the Hamilton PDEs

∂xi

∂tα
(t) =

∂H

∂pαi
(t, x(t), p(t)),

∂pαi
∂tα

(t) = −∂H
∂xi

(t, x(t), p(t)).

Making abstraction of
√

det(h), using the formula (21)
and preserving the independent variables t, x, xα, we can
introduce some pairs of functions (L,H) (see also [21]):

1) L =
1

2
hαβgijx

i
αx

j
β − h

αβgijx
i
αX

j
β ,

H =
1

2
hαβgijx

i
αx

j
β ;

2) L =
1

2
hαβgijx

i
αx

j
β −

1

2
hαβgijX

i
αX

j
β ,

H =
1

2
hαβgijx

i
αx

j
β +

1

2
hαβgijX

i
αX

j
β ;

3) L =
hαβgijx

i
αx

j
βh

γδgklX
k
γX

l
δ

hλµgmnxmλ X
n
µ

, H = −L;

4) L = hαβgijx
i
αx

j
βh

γδgklX
k
γX

l
δ − (hλµgmnx

m
λ X

n
µ )2,

H = −(hαβgijx
i
αx

j
β)2;

5) L =
hαβgijx

i
αx

j
βh

γδgklX
k
γX

l
δ

(hλµgmnxmλ X
n
µ )2

, H = −2L;

6) L = det(gijx
i
αx

j
β), H = (m− 1)L;

7) L = det

(
1

2
gij(x

i
αX

j
β + xiβX

j
α)

)
, H = (m− 1)L.

All the Lagrangians in this paper are algebraic functions
of the following arguments

u = hαβgijx
i
αx

j
β , v = hαβgijx

i
αX

j
β , w = hαβgijX

i
αX

j
β ,

r = det(gijx
i
αx

j
β), s = det

(
1

2
gij(x

i
αX

j
β + xiβX

j
α)

)
.

The pairs (L,H) contain two geometrical ingredients: the
length and the angle. Of course, since hαβ , gij are positive
definite metrics, we can obtain inequalities satisfied by L
or H.

Write the previous Hamiltonians as functions of p =
(pαi ). If we use the same independent variables, how we
distinguish between a Lagrangian and a Hamiltonian.

6.3 Least squares Hamiltonian

Our geometric dynamics [7], [11], [12], [17], [21] used a
least squares Lagrangian L (square of the length) and its
associated Hamiltonian (scalar product)

H =
1

2
hαβgij(x

i
α −Xi

α(t, x))(xjβ +Xj
β(t, x))

√
deth.

Of course, this is not conserved along the extremals of L
or along the solutions of Hamilton PDEs. On the other
hand, we remark that H corresponds either to the pair

(
xiα(t), Xi

α(t, x(t))
)

or to the pair
(
xiα(t),−Xi

α(t, x(t))
)
. If

we use simultaneously the PDE system

∂xi

∂tα
(t) = Xi

α(t, x(t))

and the PDE system

∂xi

∂tα
= −Xi

α(t, x(t)),

then the manifold T must be star-like with respect to
the origin. Also, if Xi

α are changed into −Xi
α, then the

Lagrangian L modifies, but the Hamiltonian H remains
invariant.

6.4 Energy-momentum tensor field

Because a multi-time Hamiltonian is not conserved along
the extremals of the associated Lagrangian, reasons from
physics ask to introduce the energy-momentum tensor field

Tαβ = xiβ
∂L

∂xiα
− Lδαβ

This tensor field describes the density and flux of energy,
and momentum in spacetime. If the Lagrangian L does
not depend explicitly on the multi-parameter t, then the
energy-momentum tensor field represents a conservation
law in the sense that the divergence of the tensor field
Tαβ is zero. Find the energy-momentum tensor field for
each of the previous Lagrangians.

6.5 Interaction between vector fields

To describe the ”interaction” between vector fields or 1-
forms, when they are working together in a multitime
physical or economical dynamical system, we recommend
to use their generated distributions in the sense of the
differential geometry. Of course, in this way we overpass
the old idea of summing similar vector fields or similar 1-
forms and after that of introducing the total vector field or
total 1-form in a single-time dynamical system. We pass
in fact to multitime dynamical systems on distributions.

6.6 Least squares Lagrangian associted to Maxwell PDEs

We recall some open problems from the book [21].

Let U be a domain of linear homogeneous isotropic media
in the Riemannian manifold (M = R3, δij). Maxwell’s
equations (coupled PDEs of first order)

div D = ρ, rot H = J + ∂tD, div B = 0, rot E = −∂tB,
where ∂t is the time derivative operator, together with the
constitutive equations

B = µH, D = εE,

on R×U , reflect the relations between the electromagnetic
fields:

E [V/m] electric field strength
H [A/m] magnetic field strength
J [A/m2] electric current density
ε [As/V m] permitivity
µ [V s/Am] permeability
B [T ] = [V s/m2] magnetic induction
− − (magnetic flux density)
D [C/m2] = [As/m2] electric displacement
− − (electric flux density)



Since div B = 0, the vector field B is source free,
hence may be expressed as rot of some vector potential
A, i.e., B = rot A. Then the electric field strength is
E = −grad V − ∂tA.

Find interpretations for the extremals of least squares
Lagrangians of the type

L1 =
1

2
||rot E + ∂tB||2 +

1

2
||rotH − J − ∂tD||2

+
1

2
(divD − ρ)2 +

1

2
(divB)2

which are not solutions of Maxwell equations. Can we de-
rive, in this way, the Dirac theory of magnetic monopole?

Let us refer to Maxwell theory in terms of differential
forms. In this sense, it is well-known that E,H are dif-
ferential 1-forms, J , D, B are differential 2-forms, ρ is a
differential 3-form, and star operator from D = ε ∗ E,
B = µ ∗ H is the Hodge operator. If d is the exterior
derivative operator, and ∂t is the time derivative operator,
then the Maxwell’s equations for static media are

dE = −∂tB, dH = J + ∂tD, dD = ρ, dB = 0

(coupled PDEs of first order) on R × U . Find interpreta-
tions for the extremals of least squares Lagrangians

L2 =
1

2
||dE + ∂tB||2 +

1

2
||dH − J − ∂tD||2

+
1

2
||dD − ρ||2 +

1

2
||dB||2,

which are not solutions of Maxwell equations.
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[19] C. Udrişte. Nonholonomic approach of multitime
maximum principle. Balkan Journal of Geometry and
Its Applications, 14 (2009), No. 2, 117-127.
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