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Abstract: In this work, we propose a new type of activation function for a complex valued
neural network (CVNN). This activation function is a special Möbius transformation classified
as reflection. It is bounded outside of the unit disk and has partial continuous derivatives but
not differentiable since it does not satisfy the Cauchy-Riemann equalities. However, the fixed
points set of this function is a circle. Therefore, we employ this activation to a specific complex
valued Hopfield neural network (CVHNN) and increase the number of fixed points. Using of
this activation function leads us also to guarantee the existence of fixed points of the CVHNN.
It is shown that the fixed points are all attractive which indicates that storage capacity of the
CVHNN is enlarged.
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1. INTRODUCTION

A complex valued neural network (CVNN) is a neural
network that processes information in complex plane C,
Hirose (2006). It becomes very attractive field at the end
of the 1980s and applicable to optoelectronics, imaging,
remote sensing, quantum neural devices and systems,
spatiotemporal analysis of physiological neural systems,
and artificial neural information processing, see Gangal
et al. (2007).

For CVNNs, the main task is to find a suitable activa-
tion function in a variety of complex functions. Despite
the activation function of real valued neural networks
(RVNNs) is chosen to be smooth and bounded generally as
a sigmoid function, in complex plane these properties are
not convenience for the nature of neural networks. Because
of Liouville’s theorem; the analytic and bounded functions
on entire complex plane are constant.

There are several complex activation functions proposed
in the literature. The basic ones of them are given below.

The sigmoid function was also used for CVNNs by Leung
and Haykin (1991)

f (z) =
1

1 + e−z
,

but this function has singular points at every z = (2n +
1)iπ, n ∈ Z. They avoided this problem by scaling the
input data to some region of complex plane. Later on, the
sigmoid function was adapted to CVNNs as

f (z) =
1

1 + e−Rez
+ i

1

1 + e−Imz
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by Birx and Pipenberg (1992); Benvenuto and Piazza
(1992). Also, tanh function which has singular points at
every z = (n + 1

2
)iπ, n ∈ Z was adapted to CVNNs as

real-imaginary type activation function

f (z) = tanh (Rez) + i tanh (Imz)

by Kechriotis and Monalakos (1994); Kinouchi and Hagi-
wara (1995) and as amplitude-phase type activation func-
tion

f (z) = tanh (|z|) exp(i arg(z))
by Hirose (1994).

The other activation functions are given below:

f (z) =
z

|z|

Noest (1988),

f (z) =
z

c+ 1

r
|z|

,

Georgiou and Koutsougeras (1992),

f (z) =
Rez

c+ 1

r
|Rez|

+ i
Imz

c+ 1

r
|Imz|

,

or

f (z) =
|z|

c+ 1

r
|z|

exp

[

i

{

arg z −
1

2n
sin (2n arg z)

}]

Kuroe and Taniguchi (2005), in which c and 1

r
are positive

constants and −π < arg z < π. Detailed comparison for
these types of activation functions can be found in Kuroe
and Taniguchi (2009). In addition, Kim and Adali (2002)
presented a set of elementary transcendental functions
whose components are bounded almost everywhere and
analytic functions to employ backpropagation. tanh func-
tion is one of them and the singularities of the function was
avoided by restricting the domain of interest to a circle of
radius π

2
.



Another approach to chose activation functions of CVNNs
using conformal mappings was proposed by Clarke (1990).
He emphasized that the elegant theory of conformal map-
pings can be applied to find other activation functions. He
gave the following function

f (z) =
(cos θ + i sin θ) (z − α)

1− ᾱz
,

where θ is a rotation angle, α is a complex constant with
|α| < 1 and ᾱ denotes complex conjugate of α. This
function is the general conformal mapping that transform
unit disk in the complex plane onto itself and also a
Möbius transformation. Furthermore, Möbius transforma-
tions were used in RVNNs by Mandic (2000). He showed
that sigmoidal or tanh types of activation functions for a
RVNN satisfy the conditions of a Möbius transformation.
To base on the observation of “fixed points of a neural
network are determined by fixed points of the employed
activation function” he deduced “the existence for fixed
points of the activation function are guaranteed by the
Möbius transformation”.

In a neural network, information is stored as asymp-
totically stable states, see Abu-Mostafa and St.Jacques
(1985). In this work, we aim to increase the number of
fixed points by considering this fact. Therefore, we choose
the activation function as a reflection type Möbius trans-
formation whose fixed points set is the unit circle.

The paper is organised as follows. In Section 2, the
new type of activation function is presented. The basic
properties of this function are given briefly. In Section 3, we
apply the proposed activation function to a CVNN known
as Hopfield Neural Network and analyse the number of
fixed points. In Section 4, we investigate the stability
characteristic of the fixed points using Lyapunov approach.
In Section 5, we give some conclusions. Finally, we deal
with the future works in Section 6.

2. MÖBIUS TRANSFORMATIONS AS ACTIVATION
FUNCTION

A Möbius transformation is defined as

f (z) =
az + b

cz + d
(1)

where a, b, c, d ∈ C and ad − bc = 1. It is a conformal
mapping of the complex plane and also known as linear
fractional or bilinear transformation. Such a Möbius trans-
formation has at most two fixed points if it is not identity
transformation f(z) = z. Detailed information could be
found in Jones and Singerman (1994); Needham (2000).

Möbius transformations with real coefficients can be clas-
sified into

G1 =

{

f : f (z) =
az + b

cz + d
, a, b, c, d ∈ R, ad− bc = 1

}

(2)
and

G2 =

{

g : g (z) =
az̄ + b

cz̄ + d
, a, b, c, d ∈ R, ad− bc = −1

}

.

(3)
The transformations belong to the components of G =
G1∪G2 are bijective transformations of extended complex
plane. The transformations in G1 are conformal mappings

and have at most two fixed points. Any transformation
belongs to G2 is anti-conformal mapping and can be
classified according to the value of a + d. If a + d 6= 0,
the transformation is called as a glide-reflection and has
two fixed points on the real axis. If a + d = 0, the
transformation is called as a reflection and has infinite
number of fixed points on a circle centered at a

c
and of

radius 1

|c| . To utilize the infinite number of fixed points, we

use reflection type Möbius transformation as an activation
function. We begin to analyse these types of activation
functions by choosing a simple reflection transformation

f (z) =
1

z̄
. (4)

This transformation maps unit circle onto itself, outside of
the unit circle to its inside and inside of the unit circle to
its outside. It is not differentiable since it does not satisfy
the Cauchy-Riemann equalities and has a singularity at
z = 0. This transformation is bounded only for the points
at the outside of the unit circle, see Figure 1. Therefore,
we consider the signals from the set of

B = {z : |z| ≥ 1} . (5)

Fig. 1. Geometric interpretation of the reflection transfor-
mation given by Eq.(4)

Remark : Let γ be the circle centered at p and of radius r.
Then it is known that the reflection transformation in the
circle γ is denoted by Iγ(z) and defined as follows:

Iγ(z) =
r2

z̄ − p̄
+ p. (6)

This indicates that any circle in complex plane can be
represented by a unique Möbius transformation, see Brick-
man (1993). When the circle is centered on real axis, the
transformation is to be a reflection. Indeed, we have

Iγ(z) =
pz̄ + r2 − |p|2

z̄ − p̄

Now, we divide the numerator and the denominator of
this transformation with r, then we have ad − bc = −1
and a + d = p

r
− p̄

r
= 0 since p ∈ R. It means that we

have the advantage of to determine the fixed point circle



in the complex plane. In this paper, we analyse the CVNN
whose fixed points set is chosen as the circle centered at
the origin with radius r = 1. The analysis is also valid
for the circles that is centered at the origin and with any
values of radius. From Eq.(6) the reflection transformation
of a circle centered at the origin and of radius r is

f (z) =
r2

z̄
. (7)

This transformation is bounded in the following set

B = {z : |z| ≥ r}

and maps outside of the circle with radius r to inside of
the circle with radius r. Thus, we can deduce that the
domain of the input signals and the fixed points circle can
be adjusted.

In the following section, we give a CVNN model to analyse
the advantages of the new type activation function.

3. COMPLEX VALUED HOPFIELD NEURAL
NETWORK

Hopfield neural network can be considered as a class of
nonlinear and autonomous system, see Li et al. (1985);
Leblebicioğlu et al. (2001). We consider this class of system
in complex plane in order to interest complex valued
Hopfield neural network (CVHNN) given by

ż (t) = −H (z (t)) (−Tz (t) + F (z (t))− U) ,

where T ∈ C
n×n, U ∈ C

n are matrices, z (t) ∈ C
n is state

vector, F (z) = (f1 (z1) , f2 (z2) , · · · , fn (zn))
T
: Cn → C

n

is an activation function and H (z) : C
n → C

n×n is a
nonlinear function.

The activation function is chosen as in Eq.(4):

fj (zj) =
1

z̄j
, j = 1, 2, ..., n. (8)

To obtain correspondence between fixed points of the
activation function and fixed points of the network, we
select T ∈ R

n×n and U = 0. Hence, we interest the
CVHNN with the form of

ż (t) = −H (z (t)) (−Tz (t) + F (z (t))) . (9)

Fixed points of the Eq.(9) are calculated by the following
equation:

−H (z) (−Tz + F (z)) = 0.

Assume that H (z) is a nonsingular matrix then the fixed
points are

F (z) = Tz

which correspond to the fixed points of the activation
function.

4. STABILITY OF FIXED POINTS

As mentioned above, information are stored in a neural
network as asymptotically stable states. A stable state is
a fixed point of the neural network and also known as
equilibrium point. Therefore, it is important to increase
the number of stable states in a neural network. By using
the activation function in Eq.(8) we increase the number
of fixed points, but now we must know whether the fixed
points are stable or not. We investigate stability of the
fixed points by using Lyapunov stability.

Definition 1. E (z) is a Lyapunov function of the CVHNN
if E (z) is a mapping E : C

n → R and the derivative

of E along the trajectory of CVHNN satisfies Ė(z) ≤ 0.

Furthermore, Ė (z) = 0 if and only if ż = 0.

If all equilibrium points of the network are isolated and
CVHNN given by Eq.(9) has a Lyapunov function, then
no nontrivial periodic solution exists and each solution of
the network converges to an equilibrium point as t → ∞,
see Kuroe et al. (2003).

An equilibrium point is isolated if it has no other equilib-
rium points in its vicinity, or there could be a continuum
(compact and connected set) of equilibrium points, Khalil
(1996). The fixed points of the CVHNN are isolated since
they are on a circle. Therefore, the following theorem gives
the stability of the fixed points. Here, we use the inner
product defined on C

n as

〈z1, z2〉 = z∗
2
z1,

where z1, z2 ∈ C
n and (·)

∗
denotes the conjugate trans-

pose.

Theorem 2. If the matrix T ∈ R
n×n is symmetric and the

matrix Re [H(z)] is positive definite, then the function

E (z) = −
1

2
z∗Tz +Re





n
∑

j=1

z̄j
∫

0

f̄j (s) ds



 (10)

is a Lyapunov function of the CVHNN given by Eq.(9).

Proof. We can write Eq.(10) in the component wise form
as

E (z) = −
1

2

n
∑

j=1

n
∑

k=1

z̄jTjkzk +Re





n
∑

j=1

z̄j
∫

0

f̄j (s) ds



 .

To show the monotonic decreasing of E with time t we
compute Ė(z). Differentiating the first term of E gives

−
1

2

n
∑

j=1

n
∑

k=1

(

dz̄j

dt
Tjkzk +

dzj

dt
Tjkz̄k +

dz̄k

dt
Tjkzj +

dzk

dt
Tjkz̄j

)

.

By using the symmetry property of the T matrix, this term
can be arranged as follow

−Re





n
∑

j=1

n
∑

k=1

(

Tjkzk
dz̄j

dt

)



 .

Therefore,

Ė (z) = −Re





n
∑

j=1

n
∑

k=1

(

Tjkzk
dz̄j

dt

)



+Re





n
∑

j=1

f̄j (z̄j)
dz̄j

dt



 .

Using the property of f̄j (z̄j) = fj (zj) , this equation can
be written in the matrix form as

Ė (z) = −Re [(Tz − F (z)) ż∗] .

Substituting ż∗ into the above equation gives

Ė (z) = −Re
[

(Tz − F (z)) (Tz − F (z))
∗
H(z)∗

]

= −Re [(Tz − F (z))]
2
Re [H(z)∗]

which is negative for positive definite Re [H(z)] matrix and
also equal to zero if and only if ż(t) = 0

Theorem 2 shows that the proposed activation function
leads to infinite number of stable equilibrium points. Con-
sequently, number of the stored information is increased.



5. CONCLUSIONS

This paper is constructed on the idea of interesting ge-
ometric properties of Möbius transformations which are
conformal mappings of the complex plane. Because of a
special class of Möbius transformation defined in Eq.(3)

g (z) =
az̄ + b

cz̄ + d
, a, b, c, d ∈ R, ad− bc = −1

has infinite number of fixed points if a + d = 0, we
think to combine this property with complex valued neural
network (CVNN) and aim to increase the number of
stored information in a CVNN. Thus, we have used a
simple Möbius transformation in the type of reflection
f (z) = 1

z̄
that maps the unit circle onto itself, its inside

to its outside and its outside to its inside. Since this
function has singularity at the origin and unbounded in
the unit circle, we have restricted the input signals of the
CVNN to the outside of the unit circle. Therefore, we
have guaranteed the boundedness of the function which
is an important feature for neural networks. We have
employed this activation function to a specific complex
valued Hopfield Neural Network (CVHNN) and showed
that the fixed points of the activation function are the
fixed points of the CVHNN. Finally, we have proved that
the fixed points are stable for positive real valued function
Re [H(z)] > 0.

6. FUTURE WORKS

First off all, we purpose to determine the domain of
attraction of the fixed points. Also, we want to try more
general Möbius transformation given in Eq.(3). Hence, it
is possible to choose place of the fixed points circle in the
complex plane because of the property of “every circle
in the complex plane can be determined uniquely by a
Möbius transformation”. In addition, it maybe possible to
define different activation functions for each neurons and
get different fixed points circles from each of them.
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