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1. INTRODUCTION

The neutron transport equation which is an linear equa-
tion is a special case of the Boltzmann equation with
wide applications in physics and engineering an models the
transport of neutral particles in a scattering, absorbing,
and emitting medium (14).

As is well known, the study of a given transport equation
is a quite important and interesting in transport theory.

Among of these methods Various methods have been de-
veloped to investigate, and special attention has been given
to the task of searching methods that generate accurate
results to transport problems in the context of deter-
ministic methods based on analytical procedures, for the
multidimensional transport problems, one of the effective
methods to treat linear transport equation is the spectral
method (24), (23), (20) etc..., whose basic goals is to
find exact solution for approximations of the transport
equation, several approaches have been suggested. Among
them, the method proposed by Chandrasekhar (14) solves
analytically the discrete equations, (SN equations), the
spherical harmonics method (15) expands the angular flux
in Legendre polynomials, the FN method (18) transforms
the transport equation into an integral equation. The in-
tegral transform technique like the Laplace, Fourier and
Bessel also have been applied to solve the transport equa-
tion in semi-infinite domain (16), (17) the SGF method
(3), (4) is a numerical nodal method that generates nu-
merical solution for the SN equations in slab geometry
that is completely free of spatial truncation error. The
LTSN method (30; 26) solve analytically the SN equa-
tions employing the Laplace Transform technique in the
spatial variable (finite domain). Recently, following the
idea encompassed by the LTSN method, we have derived a
generic method, prevailing the analyticity, for solving one-

dimensional approximation that transform the transport
equation into a set differential equations.

The version of this generic method are known as LTSN

(2), LTPN (32), LTWN (11), LTChN (12), LTAN (13),
LTDN (5).

Chebyshev spectral methods for radiative transfer prob-
lems are studied, e.g., by Kim and Ishimaru in (21) and
by Kim and Moscoso in (22) and by Asadzadeh and Kadem
in (1). For more detailed study on Chebyshev spectral
method and also approximations by the spectral meth-
ods we refer the reader to monographs by Boyd (8) and
Bernardi and Maday (7).

The purpose of this paper is to present the convergence of
the SUTN solution for the one dimensional transport equa-
tion, using Chebyshev polynomials (25) combined with the
Sumudu transform. The approach is based on expansion
of the angular flux in a truncated series of Chebyshev
polynomials in the angular variable. By replacing this de-
velopment in the transport equation, this which will result
a first-order linear differential system is solved for the
spatial function coefficients by application of the Sumudu
transform technique (6) after that we use the C0 semigroup
approach in order to study the convergence.

2. ANALYSIS

Let us consider the following mono-energetic 3−D trans-
port equation:

Ω.∇(r,Ω) + σtΨ(r,Ω) =
∫
4π

σs(Ω,Ω′)Ψ(r,Ω′)dΩ′

+
1
4π

Q(r) (1)

where



r = (x, y, z) = spatialvariable, (2)
Ω = (η, ξ) = angularvariable, (3)

and

σs(µ0) =
∞∑

k=0

2k + 1
4π

σskPk(µ0) =

differential scatteringcross section, (4)

with µ0 = Ω.Ω′ and Pk = the kth Legendre polynomial.

3. PLANAR GEOMETRY

We consider a planar-geometry problem with spatial vari-
ation only in the x−direction:

Q(r) = q(x), (5)

Ψ(r,Ω) =
1
2π

Ψ(x, µ). (6)

Eq. (1) simplifies to

µ
∂Ψ
∂x

(x, µ) + σtΨ(x, µ) =

1∫
−1

σs(µ, µ′)Ψ(x, µ′)dµ′ +
q(x)
2

,(7)

with

σs(µ, µ′) =
∞∑

k=0

2k + 1
2

σskPk(µ)Pk(µ′). (8)

So we consider Eq. (7) with 0 ≤ x ≤ a and −1 ≤ µ ≤ 1,
and subject to the boundary conditions

Ψ(x = 0,−µ) = f(µ), (9)

and
Ψ(x = a, µ) = 0, (10)

where f(µ) is the prescribed incident flux at x = 0; Ψ(x, µ)
is the angular flux in the µ direction; σt is the total cross
section; σsl, with l = 0, 1, ..., L are the components of
the differential scattering cross section, and Pk(µ) are the
Legendre polynomials of degree k.

Here we consider the base space is, E = L1 ([0, a]× [−1, 1]) .

Theorem 3.1. Consider the integro-differential equation
(7) subject to the boundary conditions (9) and (10), then
the function Ψ(x, µ) satisfy the follow first-order linear dif-
ferential equation system for the spatial component gn(x)

N∑
n=0

α1
n,mg′n(x) +

σtπ

2− δm,0
gm(x)

=
L∑

l=0

2l + 1
2

σslα
2
m,l

N∑
n=0

α3
n,lgn(x) +

q(x)
2

(11)

where

α1
n,m :=

1∫
−1

µTn(µ)
Tm(µ)√
1− µ2

dµ, (12)

α2
n,l :=

1∫
−1

Tn(µ)Pl(µ)dµ, (13)

α3
n,l :=

1∫
−1

Tn(µ)Pl(µ)√
1− µ2

dµ, (14)

and gm(x) are the coefficients of the expansion of the
Ψ(x, µ).

To prepare for the proof of the Theorem (3.1) we need the
following result

Proposition 3.2. Let
Tn+1(x)− 2xTn(x) + Tn−1(x) = 0 (15)

and
Pl+1(x) = 2xPl(x)− Pl−1(x)− [xPl(x)− Pl−1(x)] /(l + 1)(16)

the recurrence relations for the Chebyshev and the Legen-
dre polynomials respectively we have for l > 2 and k = 2, 3

αk
n,l+1 :=

2l + 1
2l + 2

[
αk

n+1,l + αk
n−1,l

]
− l

l + 1
αk

n,j−1 (17)

Hence, in particular for l = 0 and 1 the coefficients α2
n,l

and α3
n,l assume the values

α2
n,l =

 0 ifn + lodd,
2

(1 + l)2 − n2
ifn + leven, (18)

and

α3
n,l =

πδn,l

2− δl,0
. (19)

Proof

It easy to see that

α1
n,m =

πδ|n−m|

2(2− δn+m,1)
. (20)

For k = 2 by the multiplication of the Chebyshev and the
Legendre recurrence formulas we have

2l + 1
2l + 2

[Pl(µ)Tn+1(µ) + Pl(µ)Tn−1(µ)]

− l

2µ (l + 1)
Pl−1(µ) [Tn+1(µ) + Tn−1(µ)] . (21)

Since it is known that
Tn+1(µ) + Tn−1(µ) = 2µTn(µ) (22)

after doing some algebraic manipulations and integrating
over µ ∈ [−1, 1] on the resulting equation we get

α2
n,l+1 =

2l + 1
2l + 2

[
α2

n+1,l + α2
n−1,l

]
− l

l + 1
α2

n,j−1. (23)

The case k = 3 is treated similarly but in this case we
multiply the resulting expression by 1√

1−µ2
and integrate

over µ ∈ [−1, 1] we get the desired result.

Proof of Theorem 3.1

Expanding the angular flux in the µ variable in terms of
the Chebyshev polynomials (25) leads to

Ψ(x, µ) =
N∑

n=0

gn(x)Tn(µ)√
1− µ2

(24)



with N = 0, 2, 4, ..., where the expansions coefficients
gn(x) should be determined.

Here Tn(µ) are the well known Chebyshev polynomials of
order n which are orthogonal in the interval [−1, 1] with
respect to the weight w(t) = 1/

√
1− t2.

After replacing Eq. (24) into Eq. (7) it turns out
N∑

n=0

{µg′n(x) + σtgn(x)} Tn(µ)√
1− µ2

= (25)

L∑
l=0

2l + 1
2

σslPl(µ)
N∑

n=0

gn(x)

1∫
−1

Pl(µ′)
Tn(µ′)√
1− µ′2

dµ′ +
q(x)
2

.(26)

Using the orthogonality of the Chebyshev polynomials,
multiply the Eq. (26) by Tm(µ),considering m = 0, 1, ..., N,
and integrated in the µ variable in the interval [−1, 1] .
Thus, we get the following first-order linear differential
equation system for the spatial component gn(x)

N∑
n=0

α1
n,mg′n(x) +

σtπ

2− δm,0
gm(x)

=
L∑

l=0

2l + 1
2

σslα
2
m,l

N∑
n=0

α3
n,lgn(x) +

q(x)
2

, (27)

where

α1
n,m =

1∫
−1

µTn(µ)
Tm(µ)√
1− µ2

dµ, (28)

α2
n,l =

1∫
−1

Tn(µ)Pl(µ)dµ, (29)

α3
n,l =

1∫
−1

Tn(µ)Pl(µ)√
1− µ2

dµ, (30)

with δn,m denoting the delta of Kronecker. Here the coef-
ficients α2

n,l and α3
n,l are evaluated by the multiplication

of the Chebyshev and Legendre recurrence formulas and
integration of the resulting equation (See proposition 3.2).

We now obtain the following first-order linear differential
equation system (27) with the corresponding boundary
conditions, writing in matrix form

A.
dg

dx
(x) + Bg(x) = C(x)

g(0) = fn

g(a) = 0

 (31)

where g(x) = Col. [g0(x), g1(x), ..., gN (x)] and A and B
are squared matrices of order N + 1 with the components

(A)i,j = α1
i−1,j−1, (32)

(B)i,j =
πσt

2− δ1,j
δi,j −

L∑
l=0

2l + 1
2

σslα
2
i−1,l

N∑
n=0

α3
j−1,l (33)

and

C(x) =
q(x)
2

= Col. [C0(x), C1(x), ..., CN (x)] . (34)

The Sn discrete method consists in selecting a finite
number of discrete directions µki in the interval [−1, 1] ,
and we take the discrete ordinate of the equation (31)

Ai,j .
dg

dx
(x) + Bi,jg(x) = C(x)

g(0) = fk

g(a) = 0

(35)

We define the following arrays

Ai,j =

1∫
−1

µkTn(µk)
Tm(µk)√

1− µ2
k

dµk, (36)

Bi,j =
πσt

2− δ1,j
δi,j

−
L∑

l=0

2l + 1
2

σsl

1∫
−1

Tn(µk)Pl(µk)dµk

N∑
n=0

1∫
−1

Tn(µk)Pl(µk)√
1− µ2

k

dµk(37)

and we notice that this equation has the well known
solution (28)

g(x) = e−A−1
k

Bkxg(0) +

x∫
0

e−A−1
k

Bk(x−ξ)C(ξ)dξ, (38)

with

A−1
k Bk =

(
α1

i−1,j−1

)−1 πσt

2− δ1,j
δi,j

−
L∑

l=0

2l + 1
2

σslα
2
i−1,l

N∑
n=0

α3
j−1,l. (39)

The space En approximate E, and the SUTn transport
operator Kn = A−1

n Bn approximate the original transport
operator K given by the equation (1), so the solution of
equation (1) is given in the operator form

Ψ(x, µ) = e−
1
µ (σtI−J )xΨ(0, µ)

withJΨ(x, µ) =

1∫
−1

σs(µ, µ′)Ψ(x, µ′)dµ′
(40)

We know that the semigroups generated by the operator
A−1

k Bk satisfy the stability condition, i.e.

‖ e−A−1
k

Bk(x−ξ) ‖≤ Neω(x−ξ) (41)

in fact

‖ A−1
k Bk ‖ ≤‖ N−1 ‖ ‖

(
α1

i−1,j−1

)−1 πσt

2− δ1,j
δi,j

−
L∑

l=0

2l + 1
2

σslα
2
i−1,l

N∑
n=0

α3
j−1,l ‖ (42)

≤ max
j

(
[α1

i−1,j−1

)−1 (πσt)δi,j

2− δ1,j
−

L∑
l=0

2l + 1
2

σslα
2
i−1,l

N∑
n=0

α3
j−1,l].(43)

The approximation theorem of C0 semigroups (19) asserts
that e−A−1

k
Bk(x−ξ) converges to the C0 semigroups gener-

ated by K for x in compact subsets of R+. In this way the
convergence is obtained.



4. CONCLUSION

An adaptation of the method for the convergence of the
spectral solution within the framework of the analytical
solution to study and prove the existence and uniqueness
of the solution by using the discrete ordinates method is
essential for the linear transport in specially case steady
state with the total cross section and scattering kernel
not depending on the spatial variable. Here we use C0

semigroup approach for considering that the total and
scattering kernel are both independent with respect to the
spatial variables.

We can assert that the Chebyshev spectral method com-
bined with Sumudu transform should be general enough to
consider higher spatial dimensions in a way similar to that
presented in this paper. In preparation for these problems,
we are currently investigating the effectiveness of spectral
methods combined with Sumudu transform in solving the
linear system of differential equation analytically and to
prove the convergence we shall use the approximation
theorem.
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