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Abstract: In this paper a geometrical interpretation is given to the divergenceless equations
particularly to the magnetic field lines in confined plasmas. By using the geometrical concepts
they are formulated in Hamiltonian and Nambu formalisms. By writing these equations in the
language of the geometrical objects and by using the geometrical concepts we could simplify the
formalization. As Hamiltonian formalization has advantage of using the mechanical tools, the
geometrizing simplifies the calculation and the formalization and it reveals several deep insights.
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1. INTRODUCTION

Tokamaks are confined plasma machines that their stabil-
ities are an important problem in which the structure of
magnetic field lines plays an fundamental role(1; 2; 3; 4; 5;
6; 7; 8; 9; 10; 11; 12). In addition the plasma confinement in
tokamak can be improved by creating a chaotic fields line
region which decreases the plasma-wall interaction. This
chaotic region is created by suitably designed resonant
magnetic windings which produce the overlapping of two
or more chains of magnetic islands and, consequently,
the magnetic surfaces of destruction. Magnetic fields lines
in general are orbits of hamiltonian systems of one and
a half degree. Expressing these equation in hamiltonian
form has advantage of using powerful methods of hamil-
tonian mechanics like perturbation theory and KAM and
adiabatic invariance and etc(12). The magnetic field line
studies indicate the non-integrable divergenceless flows in
R3 may have dense, and space filling orbits and may show
extreme sensibility to initial condition, leading to a loss
of predictability, even though the system is deterministic.
When a field is represented by means of a magnetic field
line Hamiltonian the field lines can be identified with
phase space trajectories produced by the Hamiltonian.
Mathematically, the issue of magnetic surface reduces to a
problem in Hamiltonian mechanics meaning that the whole
of mechanics methods is appellable to this problem for
example perturbation theory and others. The Hamiltonian
mechanics itself can be formulated in a geometric way that
in this paper we use this formalizations for magnetic field
lines. This paper is organized in four sections: In the first
section a vector analysis of magnetic field lines is outlined
and the hamiltonian structure of these equations is derived

. This section is divided to subsections. Subsection 2 is
devoted to two integrable condition of equations. One of
them is analytical way and another is numerical. In subsec-
tion 3 we discuss the formalization in terms of forms. This
method is used to show the Hamiltonian structure of the
magnetic field lines. In the next subsection the Lie deriva-
tive of forms is applied to show this structure, and finally
the Poisson bracket method is investigated. In Section 4 we
discuss the Nambu structure of the magnetic fields because
this formalization is suitable for describing non-integrable
systems. In Section 5 we present our conclusion.

2. HAMILTONIAN FORMULATION

2.1 Vector analysis

The equations of motion of magnetic field lines are given
by dynamical system of equation,

ẋ = B, (1)

where ∇ · B = 0. When B is a nonlinear function of x
dynamical systems the theory implies that the solutions
may exhibit deterministic chaos (e.g. show extreme sensi-
tivity to the initial condition). Integrable divergence less
flows in R3 have only periodic and homo clinic or hetero
clinic orbits, whose behavior is regular and dose not lose
predictability over time. We treat two kind of magnetic
fields where the magnetic field lines is restricted to a
flux surface and another cover ergodically a finite volume.
The second field lines are not so much different from the
first(near integrable systems). All of the magnetic fields
equations have Hamiltonian structure form. Since ∇·B = 0



, B = ∇ × A in an arbitrary orthogonal system, ρ, θ, ζ,
without assumption of existence of magnetic surfaces,

A = Aρ∇ρ+Aθ∇θ +Aζ∇ζ, (2)

using B = ∇× A = ∇× (A + ∇G) so

A = Ψ∇θ + Φ∇ζ + ∇G, (3)

where ∂G
∂θ

= Aθ − Ψ , ∂G
∂ζ

= Aζ − Φ , ∂G
∂ρ

= Aρ and G = 0

at ρ = 0. Upon taking the curl, we obtain

B = ∇Ψ ×∇θ + ∇Φ ×∇ζ. (4)

(4) contrast with (1) is called canonical representation.
In proper magnetic surface case (intergrade case) the ψp
and ψt is function of ρ. In other words we have ψp(ψt). But
in general case Ψ and Φ are dependent on all variables,
ρ, θ, ζ , B · ∇Φ 6= 0 , B · ∇Ψ 6= 0, and

Φ(Ψ, θ, ζ). (5)

Using B×dl = 0, dl is tangent to the direction of magnetic
line, the Hamiltonian form equations is obtained (1),

∂Ψ

∂ζ
=
∂Φ

∂θ
, (6)

dθ

dζ
= −

∂Φ

∂Ψ
. (7)

Considering (4) we obtain

dΨ

ds
= B · ∇Ψ = ∇Φ ×∇ζ · ∇Ψ, (8)

dθ

ds
= B · ∇θ = ∇Φ ×∇ζ · ∇θ, (9)

dζ

ds
= B · ∇ζ = ∇Ψ ×∇θ · ∇ζ. (10)

Poisson bracket is define as follows

{F,G} = ∇ζ · ∇F ×∇G =
1

J
{
∂f

∂Ψ

∂g

∂θ
−
∂f

∂θ

∂g

∂Ψ
}, (11)

which satisfies antisymmetric condition

{f, g} = −{g, f} (12)

and Jacobi identity

{f, {g, h}} + {f, {g, h}} + {f, {g, h}} = 0. (13)

The manifold for which the Poisson bracket is defined on
it is called Poisson manifold. ζ coordinate is the Casimir
invariant of the system since

{ζ, f} = ∇ζ · ∇ζ ×∇f = 0. (14)

The equations of motion in Poisson bracket notation is
given by

η̇ = {η,H}, (15)

where η is replaced with Ψ, θ, ζ, then the following equa-
tions are obtained

dΨ

ds
=

1

J

∂Φ

dθ
(16)

dθ

ds
=

1

J

∂Φ

dΨ
(17)

dζ

ds
= 0. (18)

Taking J = h(Ψ)h′(θ), J can be eliminated by taking new
variables. For example let us consider the canonical bracket
of

{f, g} =
∂f

∂x

∂g

∂y
−
∂g

∂x

∂f

∂y
. (19)

For the following coordinate transformation

x = r cos θ (20)

y = r sin θ,

we have

{f, g} =
1

r
(
∂f

∂r

∂g

∂θ
−
∂f

∂θ

∂g

∂r
). (21)

Let J is the Jacobian of (20) and choosing J = 1

2
r2 we

obtain

{f, g} =
∂f

∂J

∂g

∂θ
−
∂f

∂θ

∂g

∂J
, (22)

which is in the standard form. From (10) the condition of
Jacobian is obtained

Bζ = J. (23)

Example Consider the magnetic field

B = (0, Bθ(r), B0). (24)

Choosing the general method and coordinate system r, θ, φ
Hamiltonian Φ and conjugate momentum Ψ can be found
as follows

B · ∇θ = ∇Φ ×∇φ · ∇θ, (25)

and

B · ∇θ =
∂Φ

∂r
∇r ×∇φ · ∇θ (26)

then ∫
R0rBθdr =

∫
∂Φ

∂r
dr (27)

or ∫
Bθ

Bφ
dΨ =

∫
∂Φ

∂Ψ
dΨ. (28)

And an equation for Ψ is obtained,

B · ∇φ =
∂Ψ

∂r
∇r ×∇φ · ∇θ, (29)

Bφ =
∂Ψ

∂r
∇r ×∇φ · ∇θ, (30)

∫
rR0Bφdr =

∫
∂Ψ

∂r
dr. (31)

It is noticeable that there is no assumption about inte-
grability of system. For this sake the general method is
used which is applicable for integrable and non-integrable
systems.

It is interesting to do the above calculations in Cartesian
coordinate system, then consider

A = ax∇x+ ay∇y + az∇z, (32)

choosing the direction of A such that ax = 0 , then



ẋ =
∂ay

∂z
−
∂az

∂y
(33)

ẏ =
∂az

∂x
(34)

ż =
∂az

∂y
, (35)

so

∇× A = ∇ay ×∇y + ∇az ×∇z (36)

changing the coordinate system , az(ay, y, z), we obtain

day

dz
=
∂ax

∂y
, (37)

dy

dz
= −

∂ax

∂ay
(38)

which are in Hamiltonian structure.

2.2 Integrable systems: theoretical and numerical method

Consider the dynamical systems which can be written in
the following form

ẋ = ∇u×∇v. (39)

It can be defined a Poisson bracket for these systems as
follows

{F,G} = ∇u · ∇F ×∇G. (40)

u is the Casimir function because of

{u,G} = 0. (41)

The equation of motion is written as follows

ẋ = ∇u · ∇x ×∇v. (42)

The systems like (39) are integrable systems. It can be
proved that the well-behaved magnetic field lines systems
can be written in the following form

B = ∇ψt ×∇(θt − ιζt), (43)

where ι =
dψp

dψt
. Then, the well-behaved magnetic fields are

integrable systems.

Example Let us Consider the equations

ẋ = −y ẏ = x, (44)

which can be written as

ẋ = ∇H ×∇z. (45)

z component is Casimir variable and H is the Hamiltonian
of system. Then (44) is integrable.

Example Let us consider the equations,

ṙ = 0

θ̇ = ω1 (46)

φ̇ = ω2,

which can be written in the following form

ṙ = ∇H(r) ×∇(ω1θ + ω2φ), (47)

so this system is integrable. Numerically the integrable
systems have regular cross section (Figure 1,2). All the

rational trajectory solutions are periodic and enough irra-
tional solutions densely fill the magnetic surfaces.
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Fig. 1. In Cartesian system
(x(r,θ, φ),y(r,θ, φ),z(r,θ, φ))a)periodic solution
b)enough irrational solutions fills densely the
surface.

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

c

Fig. 2. (y,z)-plane with cross-section x=0 c)cross-section
of periodic and irrational solutions.

2.3 Formalization in terms of forms

Consider the following form

α = Bxdydz +Bydxdz +Bzdxdy. (48)

For the divergenceless forms,

dα = (
∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z
)dxdydz = 0, (49)

we have α = dν. This is the equivalence of vector analysis
which says that if ∇ · B = 0, then B = ∇× A.



The Hamiltonian equations can be obtained from the
following relation

(dp+
∂H

∂q
dt)(dq −

∂H

∂p
dt) = 0, (50)

then

dpdq +
∂H

∂q
dtdq −

∂H

∂p
dpdt = 0. (51)

Equating (48)and (51) we obtain

Bz = J, (52)

where J is the Jacobi of transformation from (p, q) to
(x, y), and

∂x

∂q
=

1

J

∂p

∂y

∂x

∂p
= −

1

J

∂q

∂y
, (53)

∂y

∂p
=

1

J

∂q

∂x

∂y

∂q
= −

1

J

∂p

∂x
. (54)

Using the identities

dq =
∂q

∂x
dx+

∂q

∂y
dy (55)

dp =
∂p

∂x
dx+

∂p

∂y
dy (56)

and (53),(54) we can calculate H, p, q and in addition we
can define the Poisson bracket as follows

{H, f} =
∂H

∂p

∂f

∂q
−
∂H

∂q

∂f

∂p
. (57)

2.4 Hamiltonian vector fields

Along Hamiltonian vector fields, U, the Lie derivative of
ω = dp ∧ dq is zero or

LUω = 0. (58)

Changing the coordinate to non-canonical coordinate sys-
tem then

ω = dp ∧ dq =
1

J
dx ∧ dy. (59)

Consider the desired equations

dx

dz
=
Bx

Bz
, (60)

dy

dz
=
By

Bz
. (61)

These equations having Hamiltonian structure they must
satisfy the equation (58) along the following vector field

U =
d

dz
=
dx

dz

∂

∂x
+
dy

dt

∂

∂y
. (62)

So, we have

ω(U) =
1

J

dx

dz
dx+

1

J

dy

dz
dy. (63)

From (4)

LU (ω) = dω = 0, (64)

then

dω =
∂

∂x
(
1

J

Bx

Bz
)dx+

∂

∂y
(
1

J

By

Bz
)dy (65)

and

dω = B · ∇ ln J −B · ∇ lnBz = B · ∇ ln(
J

Bz
) = 0. (66)

Finally, the condition of such a transformation is obtained

Bz = J. (67)

2.5 Poisson Brackets, Hamiltonian dynamics and the
magnetic field equations

Consider the definition of canonical Poisson bracket

{f, g}p,q =
∂f

∂p

∂g

∂q
−
∂f

∂q

∂g

∂p
, (68)

by transforming to coordinate system (ui) we have

{f, g}u1,u2
=

1

J
(
∂f

∂ui
∂g

∂uj
−

∂g

∂ui
∂f

∂uj
). (69)

From mechanics, a dynamical system is Hamiltonian if and
only if the time derivative of PB obeys the following rule(3)

d

dt
{f, g} = {ḟ , g} + {f, ġ}. (70)

The equations ,(60),(61), being in Hamiltonian structure
they must verify the following relation

d

dz
{x, y} = 0 = {ẋ, y} + {x, ẏ} =

∂

∂x
(
1

J

Bx

Bz
) −

∂

∂y
(
1

J

By

Bz
), (71)

and using free divergence the relation, ∇ · B = 0 we lead

B · ∇ ln(J) = B · ∇ ln(Bz), (72)

as a result

J = Bz. (73)

Then, if the equations(60),(61) are in Hamiltonian struc-
ture they must satisfy the condition (73).

3. NAMBU STRUCTURE OF THE MAGNETIC
FIELD LINES

The dynamical system given by (1) is obviously non
Hamiltonian(the dimension of the phase space is odd). But
it is shown that the following volume form is preserved
along the magnetic field lines then consider

ω = dx ∧ dy ∧ dz (74)

and,

ω = dx⊗ dy ⊗ dz − dx⊗ dz ⊗ dy

−dy ⊗ dx⊗ dz + dy ⊗ dz ⊗ dx+ dz ⊗

dy ⊗ dx− dz ⊗ dx⊗ dy, (75)

where dx ∧ dy = dx⊗ dy − dy ⊗ dx. Consider vector field

B = Bx
∂

∂x
+By

∂

∂y
+Bz

∂

∂z
, (76)



from the Lie derivative identity

LB(ω) = d(ω(B)) + Bdω (77)

and since dω = 0 we have

LBω = d(ω(B)), (78)

then

LBω = (div B)ω. (79)

Since div B = 0 or any other divergence-less field,

LBω = 0. (80)

From other side

B =
dx

dt

∂

∂x
+
dy

dt

∂

∂y
+
dz

dt

∂

∂z
, (81)

then

ω(B) =
dx

dt
dydz +

dy

dt
dxdz +

dz

dt
dxdz, (82)

and

Bxdydz +Bydxdz +Bzdxdy. (83)

From Frobenius theorem equations (83) can be written as

Bxdydz +Bydxdz +Bzdxdy = dh1 ∧ dh2. (84)

The condition for the exitances of the function h1, h2 is

Ω = Pdx+Qdy +Rdz (85)

and

Ω ∧ dΩ = P (Ry −Qz)dx+Q(Pz −Rx)dy (86)

+R(Qx − Py)dz = 0,

where

dΩ = B. (87)

It is important to say that the Nambu method is suitable
for describing the non-integrable systems.

4. CONCLUSION

In this article we use the geometrical methods for magnetic
field lines. The geometric formulation of Nambu mechanics
is applied to the magnetic field lines and it is found the
condition for the existence of the Nambu functions for
magnetic field lines. As it is known this formalism is suit-
able for non-integrable systems. A geometrical formulation
has many advantage in dynamical systems for example
enable one to treat some general issues such as integral
invariants and canonical transformations in a simple way
and also it gives one deep insights.
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