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Abstract: This paper presents developing an adaptive active sliding mode controller for a robotic 

manipulator in the presence of external disturbances. Primarily, two sliding surfaces are employed. Then, 

an active sliding mode control law is derived. Lyapunov stability theorem has been used to ensure that 

the proposed controller guarantees the system stability even in the presence of external disturbances. An 

adaptation law is derived for the control parameters based on a Lyapunov function candidate. By using 

this adaptation law there is no need to know the bounds of external disturbances. For the problem of 

determining appropriate values of the design parameters Particle Swarm Optimization (PSO) algorithm 

has been used which is the paradigms of swarm intelligence. Simulation studies have been carried out to 

verify effectiveness of the proposed controller. 
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1. INTRODUCTION 

Robot manipulators are typical examples of trajectory 

controllable mechanical systems. However, their highly 

nonlinear dynamics present a challenging control problem. 

Moreover there always exist uncertainty and external 

disturbances which cause undesired performance. In recent 

years, as the need for achieving greater accuracy in tracking 

problems there has been a surge of interest in using robust 

nonlinear control techniques such as sliding mode 

control(Huh et al., 2007), adaptive control(Zeinali et al., 

2010), fractional-order control (Delavari  et al., 2010) 

intelligent approaches (Patiño, et al., 2002) and etc. The aim 

of this paper is developing an adaptive active sliding mode 

control technique which provides high performance tracking 

and good robustness in spite of external disturbances and 

parameter variations.   

Active sliding mode control which is composed of two 

control techniques; the active control and the sliding mode 

control is one of the well-known control techniques that are 

used in control problems. Recently, this control technique has 

been used for synchronization of fractional-order chaotic 

systems (Tavazoei, et al., 2008). We have derived an 

adaptation scheme for the active sliding mode controller 

parameters in spite of uncertainties and external disturbances. 

By using this adaptation law there is no need for the bounds 

of disturbances (Roopaei, et al., 2010). So, the controller 

becomes more robust and efficient. For the problem of 

determining the design parameters Particle Swarm 

Optimization (PSO) algorithm has been used. 

PSO was introduced by Kennedy and Eberhart in 1995 

(Kennedy et al., 1995; Eberhart et al., 1995). The PSO uses a 

simple mechanism that mimics swarm behavior in birds 

flocking and fish schooling to guide the particles to search for 

globally optimal solutions. As PSO is easy to implement, it 

has rapidly progressed in recent years and with many 

successful applications seen in solving real-world 

optimization problems (Lazinica et al., 2009; Faieghi et al., 

2010). 

This paper is organized as follows: in section 2 the 

mathematical model of robot manipulator is given. Section 3 

deals with developing the active sliding mode control. 

Section 4 presents stability analysis of the proposed 

controller. In section 5 an adaptation law is determined and in 

section 6 we have used PSO to find appropriate values of 

design parameters. Simulation results are illustrated in 

section 7 and finally, we conclude the paper in section 8. 

2. MANIPULATOR DYNAMICS 

A manipulator is defined as an open kinematics, chain of 

rigid links. Each degree of freedom of manipulator is 

powered by independent torques. In the absence of friction or 

other disturbances, dynamic of an n-link rigid robotic 

manipulator system can be described by the following second 

order nonlinear vector differential equation:  



 

 

     

 

( ) ( , ) ( )M q q C q q q G q                                          (1) 

where , , nq q q R , q joint variable n-vector and  is         

n-vector of generalized forces. ( ) n nM q R  is a symmetric 

and positive definite inertia matrix, ( , )C q q q  is 

coriolis/centripetal vector, and ( )G q  is the gravity vector. In 

general, a robot manipulator always presents uncertainties 

such as frictions and disturbances. The controller has a duty 

to overcome these problems (Slotine et al., 1991). 

 

 

2.1  Two-degree of freedom polar robot manipulator 

As shown in Fig.1 a two-degree of freedom polar robot 

manipulator has one rotational and sliding joint in the ( , )x y  

plane. Neglecting the gravity force and normalizing the mass 

and length of the arm, a mathematical model of two-degree of 

freedom polar robot can be expressed as follows: 
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where  is the mass of motional link, M  is the payload, 1J  

and 2J are moments of inertia of the motional link with 

respect to the vertical axis through c and o , 

respectively. ( )id t is an unknown but bounded external 

disturbance, i.e.: 

| ( ) | , 1,2i id t D i                                                            (3) 

3. ACTIVE SLIDING MODE CONTROL 

In this section we will derive an active sliding control law for 

control of robot manipulator described by (2). Assume that 

1 2 3 4, , ,d d d dx x x x are desired trajectories of states of (2). The 

tracking error is defined as follows: 
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The tracking error dynamics is driven by substituting (2) in 

(4): 
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(5) 

Now the tracking problem is changed into stabilization 

problem. The control problem is determining 1u and 2u in 

such a way that tracking errors are set into zero. First we 

choose two sliding surfaces as follows: 

 

 

Fig.1 A two-degree of freedom polar robot manipulator 

1 2 1 1s e e                                                                        (6)                            

and  

2 4 2 3s e e                                                                      (7) 

where 1 and 2  are two positive constants. The equivalent 

control law is proposed as follows: 
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(8) 

The next step is to design the reaching mode control scheme, 

which drives the system trajectories onto the sliding surface. 

The active sliding mode control law is proposed as follows: 
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where design parameters; 1 2 1 2, , ,k k r r are constants. The 

overall control law becomes: 
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Next section devotes how to choose the design parameters. 

4. STABILITY ANALYSIS 

In this section we will use Lyapunov stability theorem to 

analyze the stability of the system (5) in the presence of 

control input (10). The error dynamics (5) is reduces to (11) 

by applying the control input (5): 
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 Let us consider the following Lyapunov function candidate: 

2 2

1 2( ) 2V s s                                                                (12) 

Taking derivative of both sides of (12) with respect to time, 

one has: 

1 1 2 2. .V s s s s                                                               (13) 

From (6) and (7) we know that: 

1 2 1 1s e e                                                                      (14) 

and 

2 4 2 3s e e                                                                    (15) 

Substituting (14) and (15) into (13) and from (11), one has: 
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(16) 

We should determine the values of design parameters to have 

0V  which guarantees asymptotic stability. From (16) we 

can understand that for any negative value of 1r and 2r the 

first two terms of (16) are non-positive. From the previous 

section we know that 1d and 2d are bounded with 

1D and 2D , respectively. So choosing 1 1k D   and 

2 2k D  yields 1 1 1 1| | 0s d k s  and 2 2 2 2| | 0s d k s  . 

So, we can choose design parameters in such a way that make 

the system stable. 

5. ADAPTATION LAW SYNTHESIS 

In the previous section it was assumed that we know the 

disturbances bounds. In this section we will derive an 

adaptive scheme for the design parameters which guarantees 

system stability without any knowledge of external 

disturbance.  

Consider the following Lyapunov function candidate: 

2 1 2 1 2

1 1 1 1 2 1( ) 2V s k r                                              (17) 

where 1 1 1
ˆk k k  , 1 1 1̂r r r  , taking derivative of both 

sides of (17) with respect to time yields: 

1 1

1 1 1 1 1 1 2 1 1. . ( ) . ( )V s s k k r r                             (18) 

Using the control input (10) and substituting (16) into the 

(18), one has: 
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We can rewrite (19) as follows: 

   
 

2

1 1 1 1 1 1 1 1 1

2 1 1

1 1 1 1 1 1 2 1 1

ˆ ˆˆ| | | |

ˆ . ( ) . ( )

V D k s r s k k s

r r s k k r r  

    

     
          (20) 

It is clear that 1k̂ and 1̂r can be chosen in such a way that 

  2

1 1 1 1 1
ˆ ˆ| | 0D k s r s   , so the adaptation law can be  

derived directly from (20) as follows: 

  1 1

1 1 1 1 1 1 1 1 1
ˆ | | . ( ) 0 | |k k s k k k s               (21) 

  2 1 1 2

1 1 1 2 1 1 1 2 1
ˆ . ( ) 0r r s r r r s                          (22) 

Similar to 1k and 1r , by using the following Lyapunov 

function candidate: 

2 1 1

2 2 3 2 4 2( ) 2V s k r                                               (25) 

 adaptation law for 2k and 2r  is determined as follows: 

  1 1

2 2 2 3 2 2 2 3 2
ˆ | | . ( ) 0 | |k k s k k k s            (23) 



 

 

     

 

  2 1 1 2

2 2 2 4 2 2 2 4 2
ˆ . ( ) 0r r s r r r s                       (24) 

Block diagram of the control system is depicted in Fig.2. 

6. PARTICLE SWARM OPTIMIZATION 

In PSO, a swarm of particles are represented as potential 

solutions, and each particle i  is associated with two vectors, 

i.e., the velocity vector 
1 2[ , ,..., ]D

i i i iV v v v and the position 

vector 
1 2[ , ,..., ]D

i i i iX x x x  where D  stands for the 

dimensions of the solution space. The velocity and the 

position of each particle are initialized by random vectors 

within the corresponding ranges. During the evolutionary 

process, the velocity and position of particle i  on dimension 

d are updated as 
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d d d

i i ix x v                                                                      (27) 

Where   is inertia weight, 1c  and 2c  are acceleration 

coefficients, 1

drand  and 2

drand  are random numbers within 

[0,1] interval for the d th dimension. In ‘‘Equation (9)’’ 

ipBest is the position with the best fitness found so far the 

i th particle, and nBest  is the best fitness position in 

neighborhood. 

 Here, PSO is used to search the parameter space to find 

appropriate values of design parameters by minimizing the 

cost function. The cost function that is used here is well-

known cost function i.e. Root Mean Square Error (RMSE) 

which is defined as follows: 

1 2 3 4

j j j j

j

E E E E                                                      (28) 

where 
iE is the RMS value of ie . 

7. SIMULATION STUDY 

To verify the effectiveness of the controller, simulation 

studies have been carried out by MATLAB/SIMULNK 

software. The parameters of the robot manipulator are set 

as:
2

1 21.5 , 0.5 , 1 , 1 .M kg m kg kg J J kg m       and 

1a m , External disturbances are modeled as 

1( ) 0.3cos(4 )d t t  and 2( ) 0.5cos(4 )d t t . Also 

we applied 20% parameter variation. Initial conditions are set 

as follows: 

1 2 3 4[ (0), (0), (0), (0)] [ 0.2, 0.25,0.36,0.98]T Tx x x x   

Desired trajectories are: 
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We have used PSO to find appropriate values of design 

parameters. Parameters of PSO are set as follows: 

Population Size = 50, Number of Iterations = 50, Inertia 

Weight = 0.9 and 1 2 2.05c c 
 
.  

Parameters of the controller have found as follows: 

1 2 1

2 3 4

1.5 1.0284 9.2053

1.5 1.1748 20

  

  

  

  
  

The simulation results are depicted in Figs (3-6) where Fig.3 

shows tracking the desired trajectories defined by (29), Fig.4 

shows the control input, Fig.5 is sliding surfaces trajectories 

during the tracking and Fig.6 shows the variation of design 

parameters according the adaptation law.  
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Fig.2 Block diagram of the proposed controller 
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Fig.3 Tracking the desired trajectories (a) x1 (b) x3 
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Fig.4 Control input during the tracking (a) u1 (b) u2 

 

As shown in simulation results, the proposed controller can 

track the desired trajectories in the presence of external 

disturbances and parameter variation. By using the adaptation 

law there is no need to know the bounds of external 

disturbances. Fig. 6 shows how the parameters are adapted to 

make the system stable in the tracking procedure. 

 

0 5 10 15 20
-1.5

-1

-0.5

0

0.5
(a)

Time (second)

s 1

0 5 10 15 20
-2

-1

0

1
(b)

Time (second)

s 2

 

Fig.5 Sliding surfaces trajectory (a)s1 (b)s2 
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Fig.6 Time response of adaptation parameters 

8. CONCLUSION 

In this paper a novel intelligent adaptive active sliding mode 

controller for a robot manipulator is presented. The proposed 

controller operates well and a robust trajectory control in the 

presence of external disturbances and system uncertainties is 

achieved. The closed loop system stability is proved based on 

Lyapunov stability analysis. PSO is used to find appropriate 

values of the controller parameters. The major contribution of 

this paper is developing a novel adaptation law for the 

switching control action which prompts the controller to 

stabilize the system without knowledge of the bounds of 

disturbances and uncertainties, unlike many well-known 

methods of sliding mode control. Simulation results have 

been carried out to verify the significance of the controller. 

Numerical simulations show that starting from any initial 

conditions of the system states; the system outputs will 

asymptotically track the desired trajectories with a fast and 

robust response. 
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