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Abstract Il is well known that large transverse vibration amplitudes of beams induces a geometrical non-

linear behavior due to the axial displacements and strains, which are usually neglected in linear theory, 

but have a significant effect at large vibration amplitudes as shown both theoretically and experimentally 

in (R.Benamar, M.M.Bennouna, and R.G.White 1991). The purpose of the present work is to model such 

a behavior  using a 2 dof system made of two  masses and four spiral springs, similar to those recently 

used in (A. Eddanguir, Z. Beidouri, and R. Benamar 2009), in addition to three axial springs representing 

the non-linear axial displacements, induced by large transverse vibration amplitudes. Details of the theory 

are given, leading to definition of the mass, rigidity and non-linear rigidity tensors, usually encountered 

in previous works, dealing with non-linear vibration of structures of various types and geometry. Some 

numerical results are given, showing the amplitude dependence of the frequencies with the amplitude of 

vibration. The analogy between continuous beams and the discrete model, leading to the expressions for 

the equivalent spiral and axial stiffness will be presented later.   

Keywords: Nonlinear transverse vibration, Two-degrees-of-freedom, Discrete system, Hamilton’s 

Principle, Spectral analysis, Displacement Basis, Modal Basis, Nonlinear coupled longitudinal and axial 

vibrations. 

 

1. INTRODUCTION 

 

The purpose of the present work is to model a geometrical 

non-linear behavior of a system constituted by 2 masses 

interconnected by four linear spiral torsional springs similar 

to those used in  (A. Eddanguir, Z. Beidouri, and R. Benamar 

2009), in addition to three linear longitudinal spring (see 

figure 1).  

Such a simplifed model may represent in a discretised form 

the non-linear flexural vibration of beams. The system is 

supposed to be conservative (no damping is involved). The 

proposed definition of the non-linear normal modes is based 

on the observation that the normal solutions of the linear 

system are all periodic of the same period, and that the ratio 

of the displacement of any mass to that of any other is 

identically equal to a constant for all time (R. M. Rosenberg, 

1962). 

The aim of this work is to take into account the nonlinear 

axial vibrations induced by the transverse vibration examined  

previously by many researchers (A. Eddanguir, Z. Beidouri, 

and R. Benamar 2009; Z. Beidouri, A. Eddanguir,  and R. 

Benamar 2008, M. EL Kadiri, R. Benamar and R. G. White, 

2002 a,b) , in order to determine  the non-linear mode shapes 

of  the structure shown in figure 1. Details of the theory are 

given, leading to definition of the mass, rigidity and non-

linear rigidity tensors, usually encountered in previous works, 

dealing with non-linear vibration of structures of various 

types and geometry.  In spite of the fact that the longitudinal 

springs are linear, their stretching, due to high vibration 

amplitudes, depend non-linearly on transverse displacements, 

as shown below. This is what is usually designed as 

geometrical non-linearity. 

 

2. GENERAL FORMULATION 

 

2.1 Presentation and nomenclature 

 
 

Figure1: 2-dof discrete transverse system made of two 

masses, four spiral torsional springs and three longitudinal 

springs. 
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Figure1 shows a 2-dof system made of 2 masses 1m , 

2m and four spiral torsional springs.
r

C  are  the linear  

rigidities of the 
thr spiral torsional spring, r =1 to 4. The 

momentum M in the spiral torsional spring is given by: 

M C    . The springs are attached by  three bars 

considered as longitudinal spring having length li, i =1 to 3. 

These springs are supposed to be massless and have 

stiffnesses ki i = 1 to 3. 

The transverse displacements of the masses m1 and m2 from 

the unstretched positions of the springs are denoted as y1 and 

y2. The vector {y}defined by 
T

1 2{y} = [y  y ] can be written 

as: 

  1 1 2 2 1 1 2 2y u uy y y y       (1) 

where   1 2u ,u is the Displacement Basis (DB) defined by 

the vectors T

1{u }  = [1 0] , 
T

2{u }  = [0 1].  1 2,  is the 

Modal Basis (MB), in which 
r



represents the r
th

 linear mode 

shape of the 2-dof system. The components of the 

displacements of the masses m1 and m2 in DB and MB are 

 1 2,y y and  1 2y , y respectively. In what follows, the 

components of 
r



in DB are denoted as 2r1r , . The 

transition matrix from DB to MB is the matrix of column 

vectors
r



. 

 

2.2  Expressions for the masse tensor, linear and non 

linear rigidity tensor in DB 

 

Assume a harmonic motion defined by: 

     

     

1 1 1 11 2 12

2 2 1 21 2 22

cos cos

cos cos

y A t a a t

y A t a a t

   

   

  

  
 (2) 

 

where the Ai’s are the modulus of displacement iy expressed 

in DB (or the contributions of normalised vectors of DB), ai 

is the modulus of displacement yi expressed in MB (or 

contributions of normalised vectors of MB). 

 

The kinetic, linear and non-linear potential energies of the 2-

dof system considered can be written as: 

 

 2 21 1
sin

2 2
i j ij i j ijT y y m a a m t    , 1,2i j    (3) 

 

 21 1
cos

2 2
l i j ij i j ijV y y k a a k t   , 1,2i j    (4) 

 

 41 1
cos

2 2
nl i j k l ijkl i j k l ijklV y y y y b a a a a b t   , , , 1,2i j k l    (5) 

 

where mij, kij and bijkl are respectively the general terms of the 

mass, the linear rigidity and the non-linear rigidity tensors in 

DB. ijm , ijk and ijklb  are respectively the general terms of 

the mass, the linear rigidity and the non-linear rigidity tensors 

in MB, whose expressions in terms of the mass and spring 

linear stiffenesses are given below. 

 

The relationships between the expressions for the mass, the 

linear rigidity and the non-linear rigidity tensors in DB and 

MB can be obtained using the transition matrix [ ij ] as (Z. 

Beidouri, M. EL Kadiri, and R. Benamar 2006).:  

 

 

   







ij si tj st

ij si tj st

ijkl si tj pk ql stpq

m m

k k

b b

     (6) 

 

2.2.1 Expressions for the mass tensor in DB 

 

The kinetic energy of the 2-dof system, exhibiting a harmonic 

motion, is: 

   2 2 2 2

1 1 2 2

1
sin

2
  T m A m A t    (7) 

 

Eqs. (3) and (7) lead to the following expressions for the 

mass tensor in DB: 

11 1 12 21 22 2, 0,m m m m m m          (8)  

 

2.2.2 Expression for the linear rigidity tensor in DB 

 

For relatively small displacements, compared to the length of 

the bars, of the discrete geometricly symmetric system shown 

in fig. 1 (l1=l2=l3=l), we can write : 

1sin , 1,3 
  i i

i i

y y
i

l
   (9)  

So that the linear potential energy of the 2-dof system results 

from the linear counterpart of the stretching forces in the four 

spiral torsional springs, which gives:  

2 2 2 2

1 1 2 2 1 3 3 2 4 3

2 2 2 2

1 1 2 2 1 3 1 2 4 22

1 1 1 1
( ) ( )

2 2 2 2

1
( 2 ) ( 2 )

2

          

       

lV C C C C

C y C y y C y y C y
l

 (10) 

 

Assuming a symmetric rigidity matrix: 

i j j ik k      (11) 

 

Eqs. (4) and (10) lead to the expressions for the linear rigidity 

tensor : 

11 1 2 32

22 2 3 42

12 21 2 32

1
( 4 )

1
( 4 )

2
( )

  

  


  

k C C C
l

k C C C
l

k k C C
l

    (12)  

 

2.2.3 Expression for the nonlinear rigidity tensor in DB 

 

This work is a study of nonlinear vibration. In the study 

referenced (A. Eddanguir, Z. Beidouri, and R. Benamar 2009 ; 



l2' u 

l3' 

Z. Beidouri, A. Eddanguir, and R. Benamar, 7-9 July 2008). 
The nonlinearity was expressed by nonlinear cubic stiffness 

at the spiral torsional springs 3( ) ( )nlM C C     and the 

longitudinal strains in the bar were neglected in the model.  

In this work, the linear rigidity of the spiral springs is taken 

into account, in order to represent the effect of the bending. 

The longitudinal deformations due to tension in the bars are 

represented in the model by stretching of axial springs having 

stiffnesses ki = (EiSi)/li  in wich Ei (N/m
2
) is Young's modulus 

of materials. Si (m
2
) is the cross-section and li (m)  is the 

length of the bar i. 

The potential energy of a spring longitudinal tension or 

compression is usually expressed as a function of 

longitudinal displacement along its axis (see Figure 2) (Δl1 

following the vector v1 for the spring of stiffness k1=(E1S1)/l1, 

Δl2 following the vector v2  for the spring of stiffness k2 

=(E2S2)/l2  and Δl3 following the vector v3 for the spring 

stiffness k3=(E3S3)/l3).  

 

 

 
 

Figure 2: Illustration of the relationship between the 

transverse displacements y1, y2 and longitudinal deformations 

Δv1, Δv2, Δv3 of the bars 

Assume that the masses m1 and m2 are transversally displaced 

by y1 and y2, and let’s calculate  the resulting streching in the 

bars. 

Applying the Pythagore’s theorem  to the triangle l1 y1 l1' 
And assuming a a relatively small displacements leads to : 

 
2 2

2 2 1 21 1
1 1 1 1 12 2

1 1

(1 ) (1 )
2

y y
l l y l l

l l
         (13) 

The relationship existing between the longitudinal elongation 

Δl1 folowing vector v1 of the bar number 1 and the transverse 

displacement y1 of mass m1 is 

 
 (14) 

 

 

The potential energy of the bar number one modeled by the 

axial spring of stiffness k1 is given directly in terms of 

transverse displacement y1  as follows: 

 

 

 

 

Applying  similary the Pythagore’s theorem to the triangle l2 

(y2-y1) l2' leads to: 
 

2 2
2 2 1 22 1 2 1

2 2 2 1 2 22 2

2 2

( ) ( )
( ) (1 ) (1 )

2

y y y y
l l y y l l

l l

 
         (16) 

 

Wich gives 
 

(17) 

 

and 

(18) 

 
 

For bar 3, one obtains similarly: 

 

 

(19) 

 

 

      (20) 

 

 

The non-linear potential energy of the 2-dof-system, due to 

the nonlinearity geometric non-lineaity wich appears when 

we express the potential energy of the three longitudinal 

springs due to transverse displacements. Assuming that (l1= 

l2= l3= l) is given by: 

 

4 4

1 2 3 1 2 1 2 3 22 2

3 2 2 32 2 2
1 2 1 2 1 22 2 2

1 1
( ) ( )

8 8

3

2 4 2

nlV U U U k k y k k y
l l

k k k
y y y y y y

l l l

      

  
      (21) 

Thus, expressing the potential energy of the longitudinal 

springs due  to high transverse displacements shows to light a 

nonlinear form of potential energy as the latter is expressed in 

terms of
4 4 3 2 2 3

1 2 1 2 1 2 1 2, , ,y y y y y y and y y . This is a 

nonlinearity that comes from the geometry of the system. The 

purpose of the following section is to use expression (21) in 

order to determine the nonlinear rigidity tensor bijkl , usually 

encontred in similar studies. To do so the nonlinear potential 

energy is assumed to be written as:
1

2
nl i j k l ijklV y y y y b  

The symmetry relationships usually encountered in the 

previous cases examined by the present method (M. EL 

Kadiri, R. Benamar and R. G. White, 2002a,b) are adopted 

here as follows: 

 

, ,ijkl ijlk ijkl klij ijkl ikjlb b b b b b    , , , 1,2i j k l    (22) 

 

The tensor expression of  the potential energy of the system 

can be written as 

 
4 4 3

1111 1 2222 2 1112 1 2

2 2 3

1122 1 2 2221 1 2

4

6 4

nlV b y b y b y y

b y y b y y

  

      (23) 

 
v3 v2 

2 2

1 1
1 1 1 1 2

1 1

( )
2 2

y y
l l l l

l l
    

2 2

2 1 2 1
2 2 2 2 2

2 2

( ) ( )
( )

2 2

y y y y
l l l l

l l

 
    

2 2

2 2
3 3 3 3 2

3 3

( )
2 2

y y
l l l l

l l
    

4 4
2 1 1 1

1 1 1 1 2 2

1 1

1 1
( ) (15)

2 2 4 8

y k y
U k l k

l l
   

4 4
2 2 2 1 2 2 1

2 2 2 2 2

2 2

( ) ( )1
( )

2 2 4 8

k y y k y y
U k l

l l

 
   

4 4
2 32 2

3 3 3 3 2 2

3 3

1 1
( )

2 2 4 8

ky y
U k l k

l l
   

v1 

k3 

k2 

k1 

l3 

l1' 

l2 
   l

y   

0   

C2   

C1 C4 

l1 

C3 

 



The identification of  Eqs. (23) and (21) leads to the 

expressions for the non-linear rigidity tensor are in DB as: 

1111 1 2 2222 2 32 2

2
1122 2211 1212 2121 1221 2112 2

2
1112 1121 1211 2111 2

2
2221 2212 2122 1222 2

1 1
( ); ( )

8 8

8

8

8

b k k b k k
l l

k
b b b b b b

l

k
b b b b

l

k
b b b b

l

   

     

    

    

  (25) 

The problem of nonlinear vibration of the system is fully 

described by the matrix mij, a linear rigidity matrix Cij and 

nonlinear stiffness tensor bijkl. 

 

2.3 Model based on spectral analysis and Hamilton’s 

principle and explicit procedure for solution 

 

2.3.1 Model based on Hamilton’s principle and spectral 

analysis 

 

In the present section, the non-linear amplitude equation is 

first established using Hamilton’s principle and spectral 

analysis. Then, the procedure of solution, called the explicit 

prcedure, is presented for the non-linear vibration problem.  

 

Applying Hamilton’s principle to the vibration problem 

gives:  

0)(

/2

0




 dtTV     (25) 

 

Replacing T and V 
l nl(V=V +V ) in this equation by their 

expressions given above, i.e. Eqs.(3) to (5), integrating the 

time functions, and calculating the derivatives with respect to 

the ai’s, leads to the following set of non-linear algebraic 

equations:
23 2 2 0 , , , , 1,2i j k ijkr i ir i ira a a b a k a m i j k r   

    
(26)

 

 

which can be written in matrix form as:
 

        

   (27)
 

 

where
2  is the non-linear frequency parameter, the 

expression of which can be obtained by pre-multiplying Eq. 

(27) by  
T

a  from the left hand side, which leads to the 

following equation :
 
 

2

3

2
i j ij i j k l ijkl

i j ij

a a k a a a a b

a a m





      (28)

 

 

The system (26) can then be written as: 

 

3 2 2[( (3 2) ) ( )] 0

1,2 (29)

i j k i j k r i i r i j i j i j k l i j k l i j i j i i ra a a b a k a a k a a a a b a a m a m

r

   

        

 

This is a non-linear algebraic system, identical formally to 

those derived previously in many case of continuous systems, 

which has to be solved numerically for determination of the 

non-linear mode shapes of the 2-dof system involving axial 

and transverse vibrations. 

Three procedures have been succefly developed and used in 

previous works: Iterative procedure (A. Eddanguir, Z. 

Beidouri, and R. Benamar 2009; Z. Beidouri, A. Eddanguir, 

and R. Benamar 2008.), Explicit procedure (M. EL Kadiri, R. 

Benamar and R. G. White 2002a,b)  and Linearised 

procedure (Z. Beidouri, M. EL Kadiri, and R. Benamar 2006). 

In this work, the second method is used. 

 

2.3.2. Explicit procedure 

 

This procedure of solution was initiated in Ref (M. EL Kadiri, 

R. Benamar and R. G. White, 2002a,b)  for analysing the 

nonlinear vibrations of beams and fully clamped rectangular 

plates. Recently, the method has been slightly improved (Z. 

Beidouri, M. EL Kadiri, and R. Benamar. 2006).  and applied 

to clamped simply supported clamped simply supported and 

clamped simply supported simply supported simply 

supported rectangular plates. A brief presentation of the 

method is made here. 

This formulation is based on an approximation which 

consists on assuming, when dealing with first nonlinear mode 

that the contribution vector   1 2

T
a a a   

 can be written as 

   1 2

T
a a   stating that the second contribution 2  is very 

small versus 1a . This permits simplification of the nonlinear 

system by neglecting all of the nonlinear terms involving 2. 

Then, an approximated value of the frequency parameter can 

be obtained from the first approximate equation of system 

(26), i.e.:  
3 2

1 1111 1 11 1 113 2 2 0a b a k a m         (30) 

which gives : 

11

11112

1

11

112

2

3

m

b
a

m

k
        (31) 

Then, the second contribution 2 (a2) is calculated explicitly 

from the second approximate equation of system (26):   

  0
2

3
1112

3

1222

2

22  bamk       (32) 

 

Substituting Eq. (31) into Eq. (32) leads to 

3
21111

2
2

11 1111 22 11 221

3

2(( 3/ 2 ) / )

a b

k a b m m k
  

 

     (33) 

 

Expression (33) is an explicit simple formula, allowing direct 

calculation of the second modal contribution to the first 

nonlinear mode shape, as function of the assigned first modal 

contribution a1 and of the known parameters rrm , rrk  and 

111rb (given below for treated systems). This defines the first 

nonlinear amplitude-dependent 2-dof system mode shape 

         23 2 2 0B a a K a M a            



y(a1) for a given assigned value of the first modal 

contribution like:

  3
21111

1 1 1 2
2

11 1111 221

3
( )

((2 3 ) 2 )
  

 

a b
y a a

k a b k
  (34) 

in which the predominant term, proportional to the first linear 

mode shapes 
1 , is 1 1a  and the other term, proportional to 

the other mode shape, i.e. 
2 2 

 

, is the correction due to the 

nonlinearity for the first nonlinear mode shape.  

 

To obtain the value of the nonlinear frequency, the multi-

mode formula, written in MB has then been used (M. EL 

Kadiri, R. Benamar and R. G. White, 2002a,b): 

2

3

2
i j ij i j k l ijkl

i j ij

a a k a a a a b

a a m





   (35)

 

with 2 2a  for the first mode shape. 

 

Similar steps are used for determination of the second 

nonlinear mode shape like a function of the contribution a2. 

Using the approximation given below for the frequency 

parameter: 

2 222 2222
2

22 22

3

2

k b
a

m m
       (36) 

leads respectively to calculation of the first contribution and 

second nonlinear mode shape as: 

3
12222

1
2

22 2222 11 22 112

3

2(( 3/ 2 ) / )

a b

k a b m m k
  

 
 (37) 

3
12222

2 1 2 2
2

22 2222 112

3
( )

((2 3 ) 2 )

a b
y a a

k a b k
  

       (38) 

The value of the nonlinear frequency is recalculated using the 

multi-mode formula (35), with 1 1a  .  

 

3. APPLICATIONS TO THE SYSTEM DESCRIBED IN 

SECTION (1) 

  

For this system, the values of the masses, the length of the 

bars, the linear rigiditie of spiral and longitudinal springs are: 

m1=m2=10kg ; l1=l2=l3=1m ; C1=C2=C3=C4=10000N/rad.  

E=210000MPa, S=7143mm
2
;  k1=k2=k3=150000 N/m

2
. 

Since the masses are identical, the four torsional springs and 

the three longitudianl springs are identical, the present 

situation corresponds to a symmetric system.  

In figure 3, the nonlinear frequency parameter is plotted 

versus the displacement amplitude of the first mass 

presenting the nonlinear mode dependences of the first and 

second mode shapes of the system examined. The nonlenear 

frequency parameters corresponding to the first and seconde 

nonlinear modes increases respectively  25 % and 45 % when 

the amplitude of vibration of mass 1 increases up 0.6. The 

nonlinearity effect is also largely observed. 
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Figure 3: Non dimensional frequency parameter of system 

corresponding  to the first and second nonlinear mode shapes. 

 

In figure 4, the amplitude of the displacement of the second 

mass is plotted versus the displacement of the first mass 

presenting the first nonlinear mode of stadied system.  
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Figure 4: The second mass amplitude versus the first mass 

amplitude for system corresponding to the first nonlinear 

mode shape and the second nonlinear mode shape. 

 

4. CONCLUSIONS 

 

In this paper, a theory has been derived for the modelling of 

the geometrically nonlinear vibration of beams, based on a 

physical discretisation using both torsional spiral springs to 

represent the bending, and longitudinal springs to represent 

the axial vibrations induced by large ransverse displacement 

amplitudes.  The corresponding mass, rigidity and nonlinear 

rigidity tensors have been expressed, leading to a nonlinear 

amplitude equation, similar to that encountred previously for 



structures of many types and geometry. The first results 

obtained are satisfactory and this model is suitable, with a 

higher degrees of freedom, to represent geometrically 

nonlinear vibratuins of beams with non uniform distributions 

of mass and stiffness and various boundary conditions 
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