Effects of Suspended Sediment on the Structure of Turbulent Boundary Layer
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Abstract:  Persen and Coleman (1990) examined the applicability of the concept of two dimensional turbulent boundary layer, as developed by Persen (1974) to the case of turbulent flow with suspended sediment. They showed that the conventional self-similar features of the turbulent boundary layer flow may be preserved even with presence of seeded particles. The present analysis is concerned with the re-examination of such concept of turbulent boundary layer, in particular incorporating the effects of concentration dependent viscosity on the structures of turbulence in the near wall and wake regions. 
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1. INTRODUCTION

River flow is a class of turbulent boundary layer flow. It carries sediment. Suspended sediment is a portion of total sediment load carried by the rivers and it plays a big role in morphological changes that occurs in rivers. Suspended sediment load is considered important in estimating the effects of land use changes and engineering practices in watercourses. Many areas of hydraulics and sediment transport require essentially knowledge of vertical velocity profile. Some insight into this problems have been gained from study of experimental results and evidence already presented by the profession ( Vanoni (1946), Elata and Ippen (1961), Coleman (1981 &1986), Parker and Coleman (1986), Muste and Patel (1991), and Cioffi and Gallerano (1991) ). In most of the above mentioned papers, effects of the distribution of sediment concentration on the structure of turbulent boundary layer, specially the modification of the constants of the laws in the overlapping region and value of the wake parameter of the law of the wake are concerned. 

Let us first analyze the structure of a single phase turbulent boundary layer as the results that to be drawn from such effort may subsequently be employed to find whether they could describe boundary layer structure with seeded particles.  Further Coleman’s (1981) experimental data would be recalled for this purpose.  

In the present analysis, it is admitted that the turbulent boundary layer may be split up (Persen, 1974) into two regions, namely, (I). the inner region where law of the wall governs the flow and which is unaffected by outside manipulation (pressure changes, history etc.) and (II). the outer region where the flow may be described by a law of the wake law of the wake and velocity profiles are as such can take care of the outside manipulation of the turbulent boundary layer. Following Persen (1974) a formal description on the turbulent boundary layer will now be presented. Let us introduce the inner variables   
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where 
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is dimensionless velocity and 
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is the dimensionless distance from the wall; 
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 is the friction velocity, defined by 
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 being the wall shear stress; 
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 are the density and kinematic viscosity of the fluid.

One basic idea follows from dimensional consideration is that the law of the wall may be expressed in the form:
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An objection to the law (2) is that it is too simple for describing the wake region (cf. Persen, 1974). Spalding (1974) forwarded an analytical expression for 
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 which led the law of the wall in the form:
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The formulation (3) has the advantage that it can be applied right from the wall. But Spalding’s attempt to make the expression valid for the whole boundary layer with the choice of the constants ( and A, respectively as 
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Persen (1974) examined thoroughly the applicability of Spalding’s formulation (3) against the voluminous data placed in the Stanford Conference (1968) on turbulent boundary layer and found the appropriate values of ( and  A, respectively as
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with which makes the Spalding formulation valid near to wall region only.

As discussed earlier the turbulent boundary layer may assume to contain two regions, namely, (I). a ‘near to wall region’, which includes viscous sub-layer and wherein Spalding’s formulation (3) is universally valid with the values of the constants 
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  and 
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, given in equation (4) and (II). a ‘wake region’ in which Persen proposed a formulation which allows a smooth matching of the velocity profile at the upper edge of wake region with the free stream velocity. In this concept, the joining point of the ‘near to wall region’ (inner region) with the wake region is mathematically well defined. Also this has an advantage over the old concept of three regions (viscous sub-layer being one) where there is no well defined conditions for their range of validity.

The establishment of Persen’s theory depends on experimentally supported relation between non-dimensional velocity 
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 at the end point of the boundary layer and the corresponding non-dimensional distance from the wall
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 at the edge of the boundary layer has been shown by Persen (1974) to lie on a curve called the locus of 
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.  The quantity is important on the point of view that it may take care of manipulation from outside the boundary layer and as well the history of the boundary layer. It is worth mentioning that Persen’s (1974) theory has the special importance due to the fact that it is compatible with first principle of fluid mechanics. All these considerations lead us now to accept Persen’s (1974) theory and examine whether it is applicable to the open channel flow seeded with particles. In the present analysis experimental data as measured by Coleman (1981) for flow seeded with particles are brought into picture. 
2.  COLES’ WAKE FUNCTION (COLEMAN’S DATA)

Equation (3) being too simple for describing the wake region of the boundary layer and accordingly based on the idea of Coles [11] equation (3) should be replaced by     
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where 
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 being the boundary layer thickness.

The wake function is generally defined as the difference between the measured data in the outer region of the boundary layer and values obtained from extension of logarithmic law in this region. The formulation proposed by Coles and Hirst (1968) for the function 
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where      
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This is the formulation valid for
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. The method to be followed here will be somewhat different. Values of wake are determined as difference between the measured data in the outer region of the boundary layer and values obtained from equations (3) and (4) in that region. As
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The maximum value 
[image: image36.wmf]max

w

 and its position 
[image: image37.wmf]m

h

 at which it occurs are found by fitting a parabola through three points around the maximum value. Form now the wake function 
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Effect of concentration on 
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 are shown in Figs.1 and 2 respectively. It reveals that 
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 increases as sediment concentration increases while sediment concentration has more or less no effect on
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3.  PERSEN’S WAKE LAW
Persen (1974) replaced the Coles wake function with the expression 
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where 
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Fig. 1. Variation of 
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 plotted as function of average sediment concentration.
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Fig. 2. Variation in the position 
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 with average sediment concentration.
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Here 
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 is the point where law of the wall meets with the law of the wake. The boundary layer ends up at 
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. Persen’s law of the wake (11) has superiority over the Coles wake law as it exhibits a horizontal tangent at the outer edge 
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 of the boundary layer and that applies also for the manipulated boundary layer (adverse pressure gradient etc.). 
4.  COLMAN DATA: OPEN CHANNEL FLOW SEEDED WITH PARTICLES

The experiments of Coleman have been dully exposed to the profession through published papers (cf. Coleman, (1981), Coleman, (1986), Parker and Coleman, (1986)) and discussion (cf. Gust, (1984) and Reply of Coleman, (1984)).

The experiments were performed in a recirculating flume with a plexiglass channel 15m long and 356mm wide. The flume was supported on jacks so that the channel slope cloud be adjusted to maintain uniform flow. A pitot static tube on a vertical traverse mechanism was located at a position on the flume channel centreline 12m from the channel entrance. The maximum outside diameter of the tube was 16 mm and the diameter of the impact leg opening was 3.2mm. The impact leg could be isolated and could be used for taking suspended sediment samples. Uniform flow were maintained with constant discharge 0.064 m3/s and constant depth 169 mm with a standard deviation of 1.69 mm but with systematic increase in sediment suspension. Sand particles of average diameters, namely 0.105mm, 0.210mm and 0.420mm were used for seeding in the three series of experiments. No roughness elements were installed and no sand was allowed to deposit on the bed. Thus, any changes observed in the velocity profiles could be attributed to increase in suspended sediment only.

Water temperature varied within a narrow range around 
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 are considered throughout the analysis. The variation of kinematic viscosity is important in the vertical extent as it is dependent on the concentration distribution of the suspended sediments. The kinemetic viscosity is modified for scaling purposes. We accept the relation between kinemetic viscosity and concentration as given below (Graf, (1971); Coleman, (1981)):
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Where 
[image: image61.wmf]n

the kinemetic viscosity of the sand water mixture, 
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 are the molecular viscosity and density of clear water, 
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 is the density of sand and 
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 is the local volumetric concentration which was expressed by Coleman in volume of sediment per unit volume of sediment water mixture.

In Coleman’s (1981) experiment, the aspect ratio (width: height) of the channel was about 2:1. Consequently, the influence of the side wall may be present in the centre plane and, accordingly velocity deep phenomenon was found to occur in this experiment. 

The determination of wall shear stress or friction velocity 
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 (m/s) is important as it is used for scaling purposes. The values of friction velocity 
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 are taken from table published in Persen and Coleman (1990). Fig.3 shows the variation of wall shear stress with average sediment concentration, 
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Once the outer edge condition 
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Fig.  3. Wall shear stress as a function of average sediment concentration.
In this case  
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 is the non-dimensional maximum velocity and 
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is the position of
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. The results of three profiles are shown in Fig. 4 where a comparison between the theoretical profile and measured data is shown for the series of experiments with 0.105mm sand. The profiles have been selected for the case of no seeding to the case of maximum seeding. The comparison between the theoretical curve and experimental data (Fig. 4) shows that most of the data lie in the wake region. Inspection of Fig. 4 indicates clearly that the portion of the near to wall region decreases with the increase of concentration. 
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Fig. 4. Example on how the measured data and the theoretical curves correlate. The points 
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 are shown as closed bold circle and open circle, respectively.

For all cases correlation coefficient ‘
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’ is seen to be greater than 0.99 which justifies the use of the theoretical velocity profile derived for the single phase flow to the case of turbulent channel flow seeded with particles.

The values of  
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 are plotted against average concentration, 
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 is an increasing function of concentration while 
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The values of the ratio 
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 are plotted against average concentration in Fig.6. It is a decreasing function of concentration. This indicates clearly that if one follows the path of velocity profile he will notice the shifting over of the flow within the boundary layer from the law of the wall to the law of the wake occurs early as average concentration increases i.e. contribution of wake region to total mass flux increases as average concentration increases.
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Fig.  5. 
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The values of 
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[image: image103.wmf]d

/

y

 from the wall below which law of the wall (3,4) governs the flow and above which law of the wake (11) takes over. The result may physically be interpreted that the near to wall region represents a decreasing portion of the total boundary layer as concentration increases. 
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Fig. 6. The ratio between 
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as a function of average concentration.
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Fig. 7. The values of 
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The values of 
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Fig. 8. The ratio between 
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Fig. 9. Semi-log plot of locus of
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The values of the constant 
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 turned out to be independent of the concentration distribution of the suspended sediment. Present examination shows that the influence of particle diameter on velocity profile appears to be insignificant.
We now discuss the results as follows:
a. Flow field with sediment suspension are also describable through the inner variables.

b. A model applicable for turbulent boundary layer i.e. law of the wall (3,4) and law of the wake (11) is found equally applicable for describing the channel flow seeded with particles. It is worth mentioning that in the present analysis value of the viscosity as related to sediment concentration i.e. relation (13) has been used. 

c. Shear velocity is a slowly decaying function of concentration. 

d.  Maximum velocity of the flow, expressed in its non-dimensional form increases as sediment concentration increases while, the non-dimensional wall distance at maximum velocity of the flow decreases as sediment concentration increases.

e. With the increase of sediment concentration, the near to wall region is found to be a decreasing portion of the total boundary layer. 

f. With the increase of sediment concentration, the ratio between the mass flux in the wake region and the same occurs in the inner region increases.

g. Maximum value of the wake (
[image: image120.wmf]max

w

) increases with sediment concentration.

h. Present investigation shows that sediment diameter has no significant influence on the velocity profile but it has influence on sediment carrying capacity of channel. 
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