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Abstract: We show that analogues of classical concepts of the Weyl limit point and limit circle
cases can be introduced and investigated for second order linear dynamic equations on time
scales. Since dynamical equations on time scales unifies and extends continuous and discrete
dynamical equations (i.e., differential and difference equations), in this way we establish more
general theory of the limit point and limit circle cases.
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1. INTRODUCTION

The present paper deals with the second order linear
dynamic equations (differential equations on time scales
are called the dynamic equations) on the semi-unbounded
time scale intervals of the form
−[p(t)y∇(t)]∆ + q(t)y(t) = λy(t), t ∈ (a,∞)T, (1)

and develops for such equations an analogue of the classical
Weyl limit point and limit circle theory given by him for
the usual Sturm-Liouville equation

−[p(t)y′(t)]′ + q(t)y(t) = λy(t), t ∈ (a,∞)R, (2)
in the first decade of the twentieth century, [12]. The limit
point and limit circle theory plays an important role in the
spectral analysis of differential equations on unbounded
intervals (see [5, 11, 13]). For discrete analogues of Eq. (2)
(for infinite Jacobi matrices) the concepts of the limit point
and limit circle cases were introduced and investigated by
Hellinger [8] (see also [1, Chapter 1]).

Our consideration of the problem in this paper for Eq. (1)
on time scales allows to unify the known continuous and
discrete cases (i.e., differential and difference equations)
and extend them to more general context of time scales.

For a general introduction to the calculus and the dynamic
equations on time scales we refer the reader to [3, 4, 9].

2. LIMIT POINT AND LIMIT CIRCLE

Let T be a time scale which is bounded from below and
unbounded from above so that

inf T = a > −∞ and sup T =∞.
By the closedness of T in R we have a ∈ T. We will denote
such T also as [a,∞)T and call it a semi-infinite (or semi-
unbounded ) time scale interval.

Consider the equation
−[p(t)y∇(t)]∆ + q(t)y(t) = λy(t), t ∈ (a,∞)T, (3)

where p(t) is a real-valued ∆-differentiable function on
[a,∞)T with piecewise continuous ∆-derivative p∆(t),
p(t) 6= 0 for all t, q(t) is a real-valued piecewise continuous

function on [a,∞)T, λ is a complex parameter (spectral
parameter).

We define the quasi ∇-derivative y[∇](t) of y at t by

y[∇](t) = p(t)y∇(t).

For any point t0 ∈ [σ(a),∞)T and any complex constants
c0, c1 Eq. (3) has a unique solution y satisfying the initial
conditions

y(t0) = c0, y[∇](t0) = c1.

If y1, y2 : [a,∞)T → C are two ∇-differentiable on
[σ(a),∞)T functions, where σ denotes the forward jump
operator in T, then the Wronskian of y1 and y2 is defined
for t ∈ [σ(a),∞)T by

Wt(y1, y2) = y1(t)y[∇]
2 (t)− y[∇]

1 (t)y2(t)

= p(t)[y1(t)y∇2 (t)− y∇1 (t)y2(t)]. (4)

The Wronskian of any two solutions of Eq. (3) is indepen-
dent of t. Two solutions of Eq. (3) are linearly independent
if and only if their Wronskian is nonzero. Eq. (3) has two
linearly independent solutions and every solution of Eq.
(3) is a linear combination of these solutions.

We say that y1 and y2 form a fundamental set (or a
fundamental system) of solutions for Eq. (3) provided their
Wronskian is nonzero.

Let us consider the nonhomogeneous equation

−[p(t)y∇(t)]∆ + q(t)y(t) = h(t), t ∈ (a,∞)T, (5)

where h : T → C is a piecewise continuous function.
If y1 and y2 form a fundamental set of solutions of the
homogeneous equation (3) and ω = Wt(y1, y2), then the
general solution of the corresponding nonhomogeneous
equation (5) is given by

y(t) = c1y1(t) + c2y2(t)

+
1
ω

∫ t

t0

[y1(t)y2(s)− y1(s)y2(t)]h(s)∆s, (6)



where t0 is a fixed point in T, c1 and c2 are arbitrary
constants. Formula (6) is called the variation of constants
formula.

Let L denote the linear operator defined by
Lx = −(px∇)∆ + qx.

Lemma 1. If Lx(t, λ) = λx(t, λ) and Ly(t, λ′) = λ′y(t, λ′),
then for any b ∈ (a,∞)T,

(λ′ − λ)
∫ b

σ(a)

xy∆t = Wσ(a)(x, y)−Wb(x, y), (7)

where Wt(x, y) is the Wronskian of x and y defined by (4).

Proof. We have, using the integration by parts formula∫ d

c

f∆(t)g(t)∆t = f(t)g(t) |dc −
∫ d

c

f(t)g∇(t)∇t

established in [7], that

(λ′ − λ)
∫ b

σ(a)

xy∆t =
∫ b

σ(a)

(xLy − yLx)∆t

= −
∫ b

σ(a)

[x(py∇)∆ − y(px∇)∆]∆t

= −xpy∇ |bσ(a) +
∫ b

σ(a)

x∇py∇∇t

+ypx∇ |bσ(a) −
∫ b

σ(a)

y∇px∇∇t

= −p(xy∇ − x∇y) |bσ(a)

= Wσ(a)(x, y)−Wb(x, y).
The proof is complete.
Corollary 2. If, in particular, λ = u+ iv, λ′ = λ = u− iv
(u, v ∈ R), then we can take y(t, λ′) = x(t, λ) and (7)
yields

2v
∫ b

σ(a)

|x(t, λ)|2 ∆t = i{Wσ(a)(x, x)−Wb(x, x)}. (8)

Let ϕ(t, λ), θ(t, λ) be two solutions of Eq. (3) satisfying
the initial conditions

ϕ(σ(a), λ) = sinα, ϕ[∇](σ(a), λ) = − cosα, (9)

θ(σ(a), λ) = cosα, θ[∇](σ(a), λ) = sinα, (10)
where 0 ≤ α < π. (Note that the ∇-nabla derivative is
not defined at a if a is right-scattered). Then, since the
Wronskian of any two solutions of (3) does not depend on
t, we get

Wt(ϕ, θ) = Wσ(a)(ϕ, θ) = sin2 α+ cos2 α = 1.

Then ϕ, θ are linearly independent solutions of (3), ϕ, ϕ[∇],
θ, θ[∇] are entire functions of λ and continuous in (t, λ).
These solutions are real for real λ. Every solution y of (3)
except for ϕ is, up to a constant multiple, of the form

y = θ + lϕ (11)
for some number l which will depend on λ.

Take now a point b ∈ (a,∞)T and consider the boundary
condition

y(b) cosβ + y[∇](b) sinβ = 0 (0 ≤ β < π) (12)

and ask what must l be like in order that the solution y,
(11), satisfy (12). If denote the corresponding value of l by
lb(λ), then we find that

lb(λ) = − θ(b, λ) cotβ + θ[∇](b, λ)
ϕ(b, λ) cotβ + ϕ[∇](b, λ)

.

Let us take any complex number z and introduce the
function

l = lb(λ, z) = − θ(b, λ)z + θ[∇](b, λ)
ϕ(b, λ)z + ϕ[∇](b, λ)

. (13)

If b and λ are fixed, and z varies, (13) may be written as

l =
Az +B

Cz +D
, (14)

where A = −θ(b, λ), B = −θ[∇](b, λ), C = ϕ(b, λ),
D = ϕ[∇](b, λ). Since

AD −BC = Wb(ϕ, θ) = 1 6= 0,
the linear-fractional transformation (14) is one-to-one
conformal mapping which transforms circles into circles;
straight lines being considered as circles with infinite radii.
Besides, applying (8) to the solution ϕ(t, λ) and taking into
account (9) by virtue of which Wσ(a)(ϕ,ϕ) = 0, we have

2v
∫ b

σ(a)

|ϕ(t, λ)|2 ∆t

= −iϕ(b, λ)ϕ[∇](b, λ) + iϕ[∇](b, λ)ϕ(b, λ)
which implies that ϕ(b, λ) 6= 0 and ϕ[∇](b, λ) 6= 0 if
Imλ = v 6= 0. Therefore, if Imλ = v 6= 0, then lb(λ, z)
varies on a circle Cb(λ), with a finite radius, in the l-plane,
as z varies over the real axis of the z-plane.

The center and the radius of the circle Cb(λ) will be defined
as follows. The center of the circle is the symmetric point
of the point at infinity with respect to the circle. Thus if
we set

lb(λ, z′) =∞ and

lb(λ, z′′) = the center of Cb(λ),
then z′′ must be the symmetric point of z′ with respect to
the real axis of the z-plane, namely z′′ = z′. On the other
hand,

lb

(
λ,−ϕ

[∇](b, λ)
ϕ(b, λ)

)
=∞.

Therefore, the center of the circle Cb(λ) is given by

lb

(
λ,−ϕ

[∇](b, λ)
ϕ(b, λ)

)
= −Wb(θ, ϕ)

Wb(ϕ,ϕ)
.

The radius rb(λ) of the circle Cb(λ) is equal to the distance
between the center of Cb(λ) and the point lb(λ, 0) on the
circle Cb(λ). Hence

rb(λ) =
∣∣∣∣ θ[∇](b, λ)
ϕ[∇](b, λ)

− Wb(θ, ϕ)
Wb(ϕ,ϕ)

∣∣∣∣ =
∣∣∣∣Wb(θ, ϕ)
Wb(ϕ,ϕ)

∣∣∣∣ .
On the other hand, by virtue of (9), (10), Wb(θ, ϕ) =
Wσ(a)(θ, ϕ) = −1. Further, by virtue of (8) and (9), we
have

2v
∫ b

a

|ϕ(t, λ)|2 ∆t= iWσ(a)(ϕ,ϕ)− iWb(ϕ,ϕ)

=−iWb(ϕ,ϕ), (15)



where v = Imλ. Therefore, we obtain

rb(λ) =
1

2 |v|
∫ b
a
|ϕ(t, λ)|2 ∆t

, Imλ = v 6= 0. (16)

Since θ(b, λ)ϕ[∇](b, λ) − ϕ(b, λ)θ[∇](b, λ) = Wb(θ, ϕ) =
−1 6= 0, the transformation (13) has a unique inverse
which is given by

z = −ϕ
[∇](b, λ)l + θ[∇](b, λ)
ϕ(b, λ)l + θ(b, λ)

. (17)

We shall now prove the following statement.
Lemma 3. If v = Imλ > 0, then the interior of the circle
Cb(λ) is mapped onto the lower half plane of the z-plane
by the transformation (17), and, the exterior of the circle
Cb(λ) is mapped onto the upper half plane of the z-plane.

Proof. Since the real axis of the z-plane is the image of
the circle Cb(λ) by the transformation (17), the interior
of Cb(λ) is mapped onto either the upper half plane
or the lower half plane of the z-plane, and further, the
point at infinity of the l-plane is mapped onto the point
−ϕ[∇](b, λ)/ϕ(b, λ) of the z-plane. On the other hand, by
making use of (15),

Im

(
−ϕ

[∇](b, λ)
ϕ(b, λ)

)
=
i

2

{
ϕ[∇](b, λ)
ϕ(b, λ)

− ϕ[∇](b, λ)
ϕ(b, λ)

}

= − i
2
Wb(ϕ,ϕ)
|ϕ(b, λ)|2

=
v

|ϕ(b, λ)|2
∫ b

σ(a)

|ϕ(t, λ)|2 ∆t > 0.

This means that −ϕ[∇](b, λ)/ϕ(b, λ) belongs to the upper
half plane of the z-plane. Hence the point at infinity which
is not contained in the interor of Cb(λ) is mapped into the
upper half plane. This proves the lemma.
Lemma 4. If v = Imλ > 0, then l belongs to the interior
of the circle Cb(λ) if and only if∫ b

σ(a)

|θ(t, λ) + lϕ(t, λ)|2 ∆t < −Iml
v
,

and, l lies on the circle Cb(λ) if and only if∫ b

σ(a)

|θ(t, λ) + lϕ(t, λ)|2 ∆t = −Iml
v
.

Proof. In view of Lemma 3, if Imλ = v > 0, then l belongs
to the interior of the circle Cb(λ) if and only if Imz < 0,
that is, i(z − z) > 0. From (17) it follows that

i(z − z) = −iϕ
[∇](b, λ)l + θ[∇](b, λ)
ϕ(b, λ)l + θ(b, λ)

+i
ϕ[∇](b, λ)l + θ

[∇]
(b, λ)

ϕ(b, λ)l + θ(b, λ)

=
iWb(θ + lϕ, θ + lϕ)
|ϕ(b, λ)l + θ(b, λ)|2

.

Therefore, Imz < 0 if and only if
iWb(θ + lϕ, θ + lϕ) > 0.

By formula (8) with x = θ + lϕ, we have

2v
∫ b

σ(a)

|θ + lϕ|2 ∆t

= i{Wσ(a)(θ + lϕ, θ + lϕ)−Wb(θ + lϕ, θ + lϕ)}.

Further, by (9), (10) we haveWσ(a)(θ, ϕ) = −1, Wσ(a)(ϕ, θ) =
1, Wσ(a)(θ, θ) = Wσ(a)(ϕ,ϕ) = 0. Therefore

Wσ(a)(θ + lϕ, θ + lϕ)

= Wσ(a)(θ, θ) + lWσ(a)(θ, ϕ)

+lWσ(a)(ϕ, θ) + |l|2Wσ(a)(ϕ,ϕ)

= l − l = 2iIml.
Consequently

2v
∫ b

σ(a)

|θ + lϕ|2 ∆t = −2Iml − iWb(θ + lϕ, θ + lϕ)

and the statements of the lemma follow.
Remark 5. It is easy to see that Lemma 4 also holds when
v = Imλ < 0. In the both cases v > 0 and v > 0 the sign
of Iml is opposite of the sign of v.
Lemma 6. If v = Imλ 6= 0, and 0 < b < b′, then

C̃b′(λ) ⊂ C̃b(λ),

where C̃b(λ) is the set composed of the circle Cb(λ) and
its interior.

Proof. If l belongs to the interior of the circle Cb′(λ) or is
on Cb′(λ), then taking into account Lemma 4, we have∫ b

σ(a)

|θ + lϕ|2 ∆t ≤
∫ b′

σ(a)

|θ + lϕ|2 ∆t ≤ −Iml
v
.

Hence the lemma follows by using again Lemma 4.

Lemma 6 implies that, if v = Imλ 6= 0, then the set

∩b>σ(a)C̃b(λ) = C∞(λ)
is either a point or a closed circle with a nonzero finite
radius.
Definition 7. According as C∞(λ) is a point or a circle,
the equation (3) is said to be in the limit point case or the
limit circle case.

According to this definition, the classification seems to
depend on the p(t), q(t), and λ. However, it is independent
of λ and depends only on p(t), q(t), as is shown in the next
section.

Let m = m(λ) be the limit point C∞(λ) or any point on
the limit circle C∞(λ). Then for any b ∈ (a,∞)T, we have∫ b

σ(a)

|θ(t, λ) +m(λ)ϕ(t, λ)|2 ∆t ≤ −Imm(λ)
v

.

Hence∫ ∞

σ(a)

|θ(t, λ) +m(λ)ϕ(t, λ)|2 ∆t ≤ −Imm(λ)
v

.

Denote by L2
∆(a,∞) the space of all complex-valued ∆-

measurable (see [6]) functions f on [a,∞)T such that∫ ∞

a

|f(t)|2 ∆t <∞.

Similarly, we can introduce the space L2
∇(a,∞).

Thus, we have obtained the following theorem.
Theorem 8. For all nonreal values of λ there exists a
solution

ψ(t, λ) = θ(t, λ) +m(λ)ϕ(t, λ)
of Eq. (3) such that ψ ∈ L2

∆(a,∞).



In the limit circle case the radius rb(λ) tends to a finite
nonzero limit as b → ∞. Then (16) implies that in this
case also ϕ ∈ L2

∆(a,∞). Therefore, in the limit circle case
all solutions of Eq. (3) belong to L2

∆(a,∞) for Imλ 6= 0
because in this case both ϕ(t, λ) and θ(t, λ) +m(λ)ϕ(t, λ)
belong to L2

∆(a,∞), and this identifies the limit circle case.
We will see below in Theorem 9 that in the limit circle
case all solutions of Eq. (3) belong to L2

∆(a,∞) also for
all real values of λ. In the limit point case, rb(λ) tends
to zero as b → ∞, and from (16) this implies that ϕ(t, λ)
is not of class L2

∆(a,∞). Therefore in this situation there
is only one soluton of class L2

∆(a,∞) for Imλ 6= 0. Note
that in the limit point case the equation may not have any
nontrivial solution of class L2

∆(a,∞) for real values of λ.
For example, (for λ = 0), the equation −y∇∆ = 0 has the
general solution y(t) = c1 + c2t and evidently this solution
belongs to L2

∆(a,∞) only for c1 = c2 = 0.

3. INVARIANCE OF THE LIMIT POINT AND LIMIT
CIRCLE PROPERTIES

In the previous section the expressions “limit point case”
and “limit circle case” were applied to particular values of
λ; but in fact if the limit is a circle for any complex λ, it
is a circle for every complex λ. In the present section we
prove this property.
Theorem 9. If every solution of Ly = λ0y is of class
L2

∆(a,∞) for some complex number λ0, then for arbitrary
complex number λ every solution of Ly = λy is of class
L2

∆(a,∞).

Proof. It is given that two linearly independent solutions
y1(t) and y2(t) of Ly = λ0y are of class L2

∆(a,∞). Let χ(t)
be any solution of Ly = λy, which can be written as

Ly = λ0y + (λ− λ0)y.
By multiplying y1 by a constant if necessary (to achieve
Wt(y1, y2) = 1) a variation of constants formula (6) yields

χ(t) = c1y1(t) + c2y2(t)

+(λ− λ0)
∫ t

c

[y1(t)y2(s)− y1(s)y2(t)]χ(s)∆s, (18)

where c1, c2 are constants and c is any fixed point in
[a,∞)T. Let us introduce the notation

‖χ‖c,t =
{∫ t

c

|χ(s)|2 ∆s
}1/2

for t ∈ [a,∞)T with t ≥ c. Next, let M be such that
‖y1‖c,t ≤ M, ‖y2‖c,t ≤ M for all t ∈ [a,∞)T with t ≥ c;
such a constant M exists because y1 and y2 are of class
L2

∆(a,∞). Then the Cauchy-Schwarz inequality gives∣∣∣∣∫ t

c

[y1(t)y2(s)− y1(s)y2(t)]χ(s)∆s
∣∣∣∣

≤ |y1(t)|
∫ t

c

|y2(s)| |χ(s)|∆s

+ |y2(t)|
∫ t

c

|y1(s)| |χ(s)|∆s

≤M(|y1(t)|+ |y2(t)|) ‖χ‖c,t .
Using this in (18) yields

|χ(t)| ≤ |c1| |y1(t)|+ |c2| |y2(t)|
+ |λ− λ0|M(|y1(t)|+ |y2(t)|) ‖χ‖c,t .

Hence applying the Minkowski inequality (note that the
usual Cauchy-Schwarz and Minkowski inequalities hold on
time scales, see [3]), we get

‖χ‖c,t ≤ (|c1|+ |c2|)M + 2 |λ− λ0|M2 ‖χ‖c,t .
If c is chosen large enough so that

|λ− λ0|M2 <
1
4
,

then
‖χ‖c,t ≤ 2(|c1|+ |c2|)M.

Since the right side of this inequality is independent of t,
it follows that χ ∈ L2

∆(a,∞) and the theorem is proved.

4. A CRITERION FOR THE LIMIT POINT CASE

In this section we present a simple criterion for the limit
point case. For the usual Sturm-Liouville equation it was
established earlier by Putnam [10].
Theorem 10. If p is arbitrary and q ∈ L2

∆(a,∞), then Eq.
(3) is in the limit point case.

Proof. It is sufficient to show that the equation
−[p(t)y∇(t)]∆ + q(t)y(t) = 0, t ∈ (a,∞)T, (19)

does not have two linearly independent solutions belonging
to L2

∆(a,∞).

If y is such a solution, then, because of the condition
q ∈ L2

∆(a,∞), the function (y[∇])∆ = qy belongs to
L1

∆(a,∞) by the Cauchy-Schwarz inequality. Therefore the
limit

lim
t→∞

y[∇](t) = y[∇](t0) +
∫ ∞

t0

(y[∇])∆(s)∆s

exists and is finite. Hence the function y[∇](t) is bounded
as t→∞.
Now let y1, y2 be two linearly independent solutions of Eq.
(19); then

y1(t)y[∇]
2 (t)− y[∇]

1 (t)y2(t) = c 6= 0.

If y1 ∈ L2
∆(a,∞) and y2 ∈ L2

∆(a,∞), then y
[∇]
1 and

y
[∇]
2 are bounded, and so the function y1y

[∇]
2 − y[∇]

1 y2 =
c 6= 0 also belongs to L2

∆(a,∞), which is impossible. The
theorem is proved.
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Boston, 2001.



[4] M. Bohner and A. Peterson (Eds.), Advances in Dy-
namic Equations on Time Scales, Birkhäuser, Boston,
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