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Abstract: Backstepping control method has been a widely used control technique due to its practicality 
and suitability for a large class of systems which are linear or nonlinear. The method has a nested structure 
that can be reformulated for the fractional order systems. The design presented covers the integer order 
case and the paper presents two illustrative examples to justify the claims. The paper extends the use of 
backstepping technique in the realm of fractional order systems & control. 

1. INTRODUCTION 

Recently there has been a dramatic increase in the number of 
research outcomes regarding the theory and applications of 
fractional order systems and control, Oldham and Spanier 
(1974), Podlubny (1998), Das (2008). Despite the emergence 
of the theory dates back to a letter from Leibniz to L’Hôpital 
in 1695, asking the possible consequences of choosing a 
derivative of order ½, the theory has been stipulated and with 
the advances in the computational facilities, many important 
tools of classical control have been reformulated for (or 
adapted to) fractional order case, such as PID controllers 
Podlubny (1999), Zhao et al (2005), stability considerations, 
Matignon (1996), Matignon (1998), Chen et al (2006), 
Ahmed (2006), Kalman filtering Sierociuk and Dzielinski 
(2006), state space models and approaches Das (2008), 
Ortigueira (2000), Raynaud and Zerganoh (2000), root locus 
technique Merrikh-Bayat and Afshar (2008), applications 
involved with the partial differential equations Meerschaert 
and Tadjeran (2006), Podlubny et al (2009), discrete time 
issues Oldham and Spanier (1974), Podlubny (1998), Das 
(2008), Sierociuk and Dzielinski (2006) and so on. A system 
to be identified can well be approximated by an integer order 
model or it can be approximated by a much simpler model 
that is a fractional order one. Having the necessary techniques 
and tools for such cases becomes a critical issue and with this 
motivation in mind, this paper focuses on adapting the 
backstepping control technique for fractional order plant 
dynamics. 

Backstepping technique has been a frequently used nonlinear 
control technique that is based on the definition of a set of 
intermediate variables and the procedure of ensuring the 
negativity of Lyapunov functions that add up to build a 
common control Lyapunov function for the overall system. 
Due to this nature, the backstepping technique is applicable to 
a particular −yet wide− class of systems, which includes most 
mechanical systems, biochemical processes etc. The 
technique has successfully been implemented in the field of 
robotics to as one of the state variables is of type position and 
the other is of type velocity, Krstic (1995), Madani and 
Benallegue (2006), Adigbli et al (2007), Hua et al (2009). 

Although the tools and approaches of fractional order 
mathematics and backstepping control are not new, 

implementation of backstepping control for fractional order 
system dynamics is. The reason is the definition of derivative 
that is generalized by Leibniz rule. The rule, which also 
generalizes the integer order cases, yields infinitely many 
terms for the product and it becomes difficult to figure out 
stability by choosing a square type Lyapunov function and 
obtaining its time derivative. This paper discusses a remedy 
to this within the context of backstepping control method. 
The contribution of the current study is to extend the 
backstepping technique to fractional order plants. 

This paper is organized as follows: The second section briefly 
gives the definitions of widely used fractional 
differintegration formulas and basics of fractional calculus, 
the third section describes the backstepping technique for 
fractional order plant dynamics, the fourth section presents a 
set of simulation studies covering a second order linear 
system with known dynamics, and a third order nonlinear 
system having uncertainties and disturbances, and the 
concluding remarks are given at the end of the paper. 

2. FRACTIONAL ORDER DIFFERINTEGRATION 
OPERATORS 

Let Dβ denote the differintegration operator of order β, where 
β∈ℜ. For positive values of β, the operator is a differentiator 
whereas the negative values of β correspond to integrators. 
This representation lets Dβ to be a differintegration operator 
whose functionality depends upon the numerical value of β . 
With n being an integer and n−1 ≤ β < n, Riemann-Liouville 
definition of the β-fold fractional differintegration is defined 
by (1) where Caputo’s definition for which is in (2). 
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where Γ(β )=∫0
∞e-ttβ-1dt is the well known Gamma function. In 

both definitions, we assumed the lower terminal zero and the 
integrals start from zero. Considering ak, bk ∈ℜ and αk, 
βk∈ℜ+, one can define the following differential equation 
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and with the assumption that all initial conditions are zero, 
obtain the transfer function given by (4). 
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Denoting frequency by ω and substituting s = jω in (4), one 
can exploit the techniques of frequency domain. A significant 
difference in the Bode magnitude plot is to observe that the 
asymptotes can have any slope other that the integer multiples 
of 20 dB/decade and this is a substantially important 
flexibility for modeling and identification research. When it 
comes to consider state space models, one can define 
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and obtain the transfer function via taking the Laplace 
transform in the usual sense, i.e. 
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−
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1

)( β  (6) 
For the state space representation in (5), if λi is an eigenvalue 
of the matrix A, the condition 
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is required for stability. It is possible to apply the same 
condition for the transfer function representation in (4), where 
λis denote the roots of the expression in the denominator. 
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Fig. 1. Crone approximation to the operator s0.5 with 
ωmin=1e−12 rad/s, ωmax=1e+4 rad/s, N = 9  

The implementation issues are tightly related to the numerical 
realization of the operators defined in (1) and (2). There are 
several approaches in the literature and Crone is the most 
frequently used scheme in approximating the fractional order 
differintegration operators, Das (2008). More explicitly, the 

algorithm determines a number of poles and zeros and 
approximates the magnitude plot over a predefined range of 
the frequency spectrum. In (8), the expression used in Crone 
approximation is given and the approximation accuracy is 
depicted for N = 9 in Figure 1 and for N = 40 in Figure 2. 
According to the shown approximates, it is clearly seen that 
the accuracy is improved as N gets larger, yet the price paid 
for this is the complexity. 
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Fig. 2. Crone approximation to the operator s0.5 with 
ωmin=1e−12 rad/s, ωmax=1e+4 rad/s, N = 35. 

3. BACKSTEPPING CONTROL TECHNIQUE FOR 
FRACTIONAL ORDER PLANT DYNAMICS 

Denote the β-fold differintegration operator Dβx by x(β) and 
consider the system 
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where x1 and x2 are the state variables, 0<β1, β 2<1 are 
positive fractional differentiation orders, f(x1,x2) and g(x1,x2) 
are known and smooth functions of the state variables and 
g(x1,x2)≠0. Define the following intermediate variables of 
backstepping design. 
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where A1=0 and 1( )
21r rβ = . 

Theorem: Let z be the variable of interest and choose the 
Lyapunov function given by (11). 
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If  ( ) 0zz β <  if 0< β <1 is maintained then 0zz <  is satisfied. 

Proof: Consider the Riemann-Liouville definition, which is 
rewritten for the given conditions in (12). 
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If  ( ) 0zz β <  is satisfied, then the variable z and the integral  
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decreasing for positive z, and monotonically increasing for 
negative z. Since the denominator of the integrand is always 
positive, this can only arise if 0zz <  is satisfied. 

Considering the Caputo’s definition in (14), having 
( ) 0zz β <  can arise when 0zz < . 
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This proves that forcing ( ) 0zz β <  implies 0zz < . � 

Now we will formulate the backstepping control technique 
for the plant described by (9) by repetitively checking the 
quantities 1( )

1 1z z β  and 1 2( ) ( )
1 21 2z z z zβ β+  as explained below. 

Step 1: Check 1( )
1 1z z β  
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Step 2: With k1>0, choose 2 1 1A k z= − , this would let us have 

 1( ) 2
1 1 1 1 21z z k z z zβ = − +  (16) 

Step 3: Check 1 2( ) ( )
1 21 2z z z zβ β+  
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Step 4: Force 1 2( ) ( ) 2 2
1 2 1 1 2 21 2z z z z k z k zβ β+ = − − , k2>0, this 

requires 
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Step 5: Solve for u 

 ( )2 2( ) ( )
1 2 1 1 2 22 1

1 2

1 ( , )
( , )

u f x x r k z z k z
g x x

β β= − − + + +  (19) 

It is possible to generalize the above procedure for higher 
order systems of the form 
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and the control law 
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where kq>0 and 
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and the result of applying the control law in (21) is as below. 
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According to the aforementioned theorem, ensuring the 
negativeness of the right hand side of (24) equivalent to 
ensuring the negativity of 1

q
i ii z z=∑ , and the trajectories in 

the coordinate system spanned by z1,…,zq converge the 
origin. 

4. SIMULATION STUDIES 

In this section, we consider two sets of simulations so justify 
the claims. The first system is linear and a second order one 
with all necessary parameters are known perfectly. The 
system is given by (25). 
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 (25) 

The system is desired to track a sinusoidal profile for a period 
of 50 seconds, and then the following of a pulse like 
command is claimed. The results are illustrated in Figure 3-4. 

According to the presented results, precise tracking of the 
command signals is achieved with N=35 term approximation 
for the fractional order differentiation operators. The 
numerical realization has been performed in Matlab 
environment with Ninteger toolbox, Valerio (2005). The 
results seen in Figure 3 have been obtained with k1=k2=10, 
and those in Figure 4 are obtained with k1=k2=0.1. The former 
case reveals better tracking performance while the latter 
produces smother control signals and the comparison guides 
the designer for setting the best parameter values for the 
design expectations. 

In the second set of simulations, a third order system 
dynamics with several uncertainty terms is considered. The 
system dynamics is given by (26). 

 

(0.7)
21

(0.6)
31

(0.5)
1 2 3 1 2 33 ( , , ) ( , , , ) ( ) ( )

x x

x x

x f x x x x x x t g t u tξ

=

=

= + Δ + +

 (26) 

where Δ(x1,x2,x3) and ξ(t) are uncertainties and disturbance 
terms that are not available to the designer. In above, we have 
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Fig. 3. Simulation results for the system described by (24). 
k1=k2=10, N=35 and the error converges very quickly to zero. 
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Fig. 4. Simulation results for the system described by (24). 
k1=k2=0.1, N=35 and tracking error is visible in this case. 
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Fig. 5. Simulation results for the system described by (26)-
(30), k1=k2=k3=10 and N=35. 

The results of the simulations are shown in Figure 5, where it 
is seen that the reference signal for the first state variable is 
followed very precisely when k1=k2=10 and N=35. Regarding 
the second state variable, due to the sharp changes in the 
reference signal, several instantaneous peaks are visible. The 
effect of the disturbances and approximation errors are seen 
as a slight degradation in the tracking performance of the 
third state variable. The last row of Figure 5 shows the 
control signal that yields the shown tracking performances. 
Clearly the control signal has very sharp responses when 
there are sudden changes in the command signal. In Figure 6, 
the approximation parameter is reduced to N=9 and the 
simulations were repeated. Apparently in this case the state 
tracking performance even for the second state is visibly 
degraded and we conclude that the numerical issues in 
implementing the fractional order differintegration operators 
influence the performance significantly.  

Since the reference signal contains instantaneous changes, the 
responses are affected at these instants. In order to clarify this 
situation, we study the second example once again but in this 
time, we choose the reference signal as a filtered version of 
the reference signal considered in the previous cases. More 
explicitly, we choose 
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where C(s) is the command signal used so far and R1(s) is the 
Laplace transform of r1(t). The results are shown in Figure 7, 
where it is seen that both the trajectory tracking performance 
and the control signal smoothness are very good provided that 
the smoothness of the command signal is assured. 



The presented results demonstrate that the backstepping 
design can be adapted for fractional order plant dynamics and 
the use of better approximations for fractional order operators 
can lead to improved performance indications. 
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Fig. 6. Simulation results for the system described by (26)-
(30), k1=k2=k3=10 and N=9. 

5. CONCLUSIONS 

This paper focuses on the adaptation of backstepping 
control technique for fractional order plant dynamics. The 
derivation of the control law for a second order plant is given, 
the result is generalized for q-th order case and it is shown 
that ensuring zz(β)<0 implies 0zz <  and stability conclusions 
for the control laws maintaining zz(β)<0 are tied to the integer 
order case. Two application examples are scrutinized. The 
first is a linear second order system, the analytical details 
embodying which is known thoroughly. The second example 
is a nonlinear system that possesses some uncertainty terms as 
well as disturbances, which are all bounded. The adapted 
backstepping scheme is applied to both systems and it is seen 
that the analytical claims are met perfectly for the first case 
and some degradation in the performance due to the 
uncertainties is seen in the second case. If the smoothness of 
the command signal is assured, then a significant 
improvement in the trajectory tracking performance and the 
command signal smoothness is observed. 

Briefly, the paper demonstrates the use of backstepping 
control technique for fractional order plant dynamics and 
several illustrative examples are discussed. The results show 
that the design parameters N and kis have a strong influence 
on the overall performance of the control system as well as 

the smoothness of the command signal is seen to be an 
important parameter influencing the closed loop performance. 
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Fig. 7. Simulation results for the system described by (26)-
(30), k1=k2=k3=10, N=35 and the reference signal is a filtered 
one as described by (31). 
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