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Gerhard Wilhelm Weber ∗∗∗

∗ Department of Mathematics and Computer Science, Faculty of Art
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Abstract:
In a genetic and metabolic structure, the interactions among the genes have to be identified
and the influences aimed at to be predicted. In such a genetic network, expressing clearly the
connections is a research problem of mathematical modeling which has significant application
areas. In this study, we discuss the models whose dynamics are described by a class of
time-continuous ordinary differential equations having a general form in the extended space
Ė = M(E)E where E is a vector of gene-expression levels and M(E) is the matrix having
functional entries containing unknown parameters to be optimized. Accordingly, time-discrete
versions of that model class are studied and improved by introducing 3rd-order Heun’s method
and 4th-order classical Runge-Kutta method. The corresponding iteration formulas are derived
and corresponding matrix algebras are obtained. After that, we use nonlinear mixed-integer
programming for the parameter estimation in the considered model and present the solution of a
constrained and regularized given mixed-integer problem as an example. By using this solution
and applying the 3rd-order Heun’s method as a different discretization scheme, we generate
corresponding time-series of gene-expressions and compare them with the experimental data
and with the approximate results that we obtained from other numerical methods to exercise
the performance of the new scheme on this example.

Keywords: Gene-networks, regulatory systems, environments, dynamical systems,
discretization, mixed-integer nonlinear programming, optimization.

1. INTRODUCTION

The analysis of time-series gene expression data, which
are obtained from DNA-microarray chip experiments, is
a challenging problem that has significant applications
in the areas of life and environmental sciences, computa-
tional biology, and engineering sciences. According to these
obtained experimental data and the data coming from
environmental measurements, the interactions of each gene
with the others in a metabolic and genetic structure have
to be identified and the influences need to be predicted.

Investigating the genetic networks is one of the interesting
and promising subject of modern science. A genetic net-
work can be defined as a weighted directed graph which
consists of nodes representing genes, and of arcs with func-
tional weights expressing the influences of each gene onto
the other genes in the network. Each node can be equipped
with a (level) function of the other genes’ combined effects
on it. These kinds of influences between genes are aimed
to be predicted. There are many developed analytic and
numerical tools for the construction and understanding of

such networks which are studied by Ahuja et al. (1993);
Chen et al. (1999); Defterli et al. (2010); DeRisi et al.
(1997); Gebert et al. (2004, 2006, 2007); Taştan (2005);
Uğur et al. (2009); Pickl and Weber (2001); Weber et al.
(2008a,b, 2009a,b). In the papers of Uğur and Weber
(2007); Uğur et al. (2009); Weber et al. (2008a,b, 2009b),
genetic networks are extended to gene-environment net-
works. In this extension, the new nodes represent envi-
ronmental items such as poison in soil, groundwater, in
air or food, emissions, radiation, and also the welfare
and living conditions, temperature (concerning, e.g., global
warming), and so on, for a healthy lifestyle.

In this work, we introduce and analyze time-discrete
target-environment regulatory systems, especially, for
gene-environment and eco-finance networks. Then, we
present a corresponding mixed-integer nonlinear program-
ming (MINLP) problem. This paper widens the existing
mathematical toolbox by introducing other schemes of
time-discretization into the study and discussing their po-
tential of improvement. Lastly, we gave the state-of-the-art
methods and software of mixed-integer programming into



the area of gene-environment networks. By this extended
toolbox, we aim at being better prepared for the modeling
and prediction of our networks, and for a better service in
the mentioned real-world areas.

In Section 2, we give some information about MINLP
problems with their classifications. Section 3, introduces
the models for our network class and present the networks’
dynamics which, then, in Section 4, will become time-
discretized by using the new schemes. For the model that
we consider in Section 5, a MINLP problem is defined as
our optimization problem. Then, it is solved numerically
as an example in Section 6 where the corresponding
calculations are presented with the comments on the
obtained numerical results. Then, some comparative work
is done for different methods with the help of the figures.
The conclusion of our paper and an outlook are given in
Section 7.

2. ABOUT MIXED-INTEGER NONLINEAR
PROGRAMMING

Mixed-integer nonlinear programs are models of the gen-
eral form

z = min f(x), (1a)

subject to (s.t.) g(x) ≤ 0, (1b)

x ∈ Zp × Rn−p, (1c)

where f : Rn → R is an objective function, and g :
Rn → Rm is a constraint system. We assume that f and
g are continuous functions and that X := {x ∈ Zp ×
Rn−p : g(x) ≤ 0} is a compact set. This implies that f
attains its minimum for some x ∈ X. Hence (1) is a well-
defined problem. The question is how to actually solve a
problem of the form (1) numerically.

Without loss of generality we can assume that f is lin-
ear. If not, we can introduce a new variable y and add
the constraint f(x) ≤ y to the constraint system (1b).
Together with the new objective function min y we then
obtain a problem that is equivalent to (1), but with a linear
objective function. If g is differentiable and p = 0, then (1)
is a pure nonlinear optimization problem, and techniques
from constrained nonlinear optimization can be applied. If
g fulfills futher regularity assumptions, the Karush-Kuhn-
Tucker (KKT) conditions provide necessary conditions for
a solution to be (local) optimal; see Boyd and Vanden-
berghe (2004). These techniques originate from numerical
analysis and yield only stationary points or local optima,
if no further convexity assumption is made. Moreover, in
the case of p > 0, they are not able to handle integrality
restrictions on the variables. However, in case of a convex
optimization problem, that is, if X is a convex set and f is
a convex function, they are able to find a global optimum.

For a general MINLP with a non-convex set X there are
several methods described in the literature in order to relax
(1) to a convex and continuous problem, such that a proven
global optimum can be achieved at least for the relaxed
problem (Smith and Pantelides (1999); Tawarmalani and
Sahinidis (2002, 2004)). The first way in this direction is
to relax the integrality constraint on the variables, which
gives the following relaxation:

z0 = min f(x), (2a)

s.t. g(x) ≤ 0, (2b)

x ∈ Rn. (2c)

Clearly we have z0 ≤ z.

One example from the literature for a convexification of the
nonconvex, nonlinear function g is the αBB method (see
Adjiman et al. (1996)). There g is replaced by convexified
nonlinear functions ĝ0 using convex terms that are added
with a suitable large weight parameter α in order to
ensure global convexity. In the approach that we follow,
we replace g by convex, linear functions ĝ0 which are outer
approximations of the non-convex functions. In any case
one has to ensure that ĝ0 ≤ g, hence X ⊆ X̂ := {x ∈ Zp ×
Rn−p : ĝ0(x) ≤ 0}. The corresponding global optimum
ẑ0 is at least a lower bound on z0, since we are solving a
relaxation. Denote by x̂0 a point with f(x̂0) = ẑ0. If x̂0 ∈
X, then a global optimum for problem (1) is found, and
we are done. Otherwise, we have to refine the relaxation.
This can be done by embedding the whole procedure in a
branch-and-bound process, which we outline in the sequel.

If x̂∗0 /∈ X then two things could be the case. First,
x̂0 /∈ Zp × Rn−p. In this case there exists a coordinate
1 ≤ j ≤ p with x̂0

j /∈ Z. We then break the one (father)
problem (2) into two child problems. One problem is

z1 = min f(x), (3a)

s.t. ĝ0(x) ≤ 0, (3b)

xj ≤ bx̂0
jc, x ∈ Rn, (3c)

the other problem is

z1 = min f(x), (4a)

s.t. ĝ0(x) ≤ 0, (4b)

xj ≥ dx̂0
je, x ∈ Rn. (4c)

Second, g(x̂0) > 0. In this case we identify a coordinate
p < j ≤ n and replace the approximation ĝ0 by two
approximations ĝ1(x) which is valid for {x ∈ Zp × Rn−p :
xj ≤ x̂0}, and ĝ2(x) which is valid for {x ∈ Zp × Rn−p :
xj ≥ x̂0}. Since we are branching on a continuous variable
xj , this process is also known as spatial branching. So we
again obtain two child problems of the form

z1 = min f(x), (5a)

s.t. ĝ1(x) ≤ 0, (5b)

xj ≤ x̂0
j , x ∈ Rn, (5c)

the other problem is

z2 = min f(x), (6a)

s.t. ĝ2(x) ≤ 0, (6b)

xj ≥ x̂0
j , x ∈ Rn. (6c)

The new convexifications ĝ1, ĝ2 are only locally valid, in
contrast to the globally valid convexification ĝ0. This gives
the opportunity to obtain a tighter relaxation.

By breaking up the one difficult father problem (2) into
two child problems, either (3) and (4), or (5) and (6), we



can again apply the same solution algorithm as before. In
case of the αBB method, this is a convex NLP solver, in
our case of linear functions, this is done by an LP solver.

After solving each of the child problems, we are in general
faced with the same problem as before, namely that we
only obtained a solution of a relaxation that is not feasible
for the original problem. Hence, we have to apply the
same reasoning as above and select another variable for
branching and further refinement of the relaxation. The
list of problems that are created in this way is usually
managed as a tree, where at the root node the first problem
(2) is located, and all other problems are further nodes
of this tree. If all variables are integer variables, turns
out to be X is a bounded set, this tree has a finite (but
potentially large) vertices only. If we have to perform
spatial branching, the finiteness can only be assured if we
define an approximation accuracy, such as 10−4, and if the
difference between the original function g and its convex
approximation ĝ is less than this finite precision, we do
not branch further.

In general, we do not have to enumerate the whole tree.
There are ways to bound its size and cut off unnecessary
parts of it. A node can be pruned if the subproblem turn
out to be infeasible. If the solution is feasible not only for
the relaxation, but also for the root problem (2), then we
have an upper bound z̄ on z. We do not have to branch
this node further. Moreover, the bound z̄ can be used
to prune all other open subproblems having an objective
function already equal to or greater than z̄. Due to the
fact that the tree can be kept significantly smaller, and
thus computation times can be reduced to a large extent,
one is interested in obtaining feasible solutions to (1) early
in the solution process. These solutions can also come from
other sources, such as genetic algorithms, tabu search,
or simulated annealing, to name just a few of the most
prominent meta-heuristics in this area.

3. THE CLASS OF MODELS FOR THE DYNAMICS
OF GENE-ENVIRONMENT NETWORKS

In the literature, the firstly introduced time-continuous
models to represent the gene-environment networks were
given by the following systems of ordinary differential
equations (ODEs) of the time-autonomous form

Ė = F(E), (7)

where E = (E1, E2, . . . , Ed)
T (E = E(t), t ∈ I) is the

d-vector of positive concentration levels of proteins (or
mRNAs, or small components) and of certain levels of the

environmental factors. Ė (= dE

dt
) represents a continuous

change in the gene-expression data, and Fi : Rd → R are
nonlinear coordinate functions of F (Chen et al. (1999);
Hoon et al. (2003); Sakamoto and Iba (2001); Uğur et al.
(2009)). The estimation of parameters associated and con-
tained in the definition of F is studied by considering the
experimental data vectors Ē of these levels which are ob-
tained from microarray experiments and from environmen-
tal measurements at the sample times. Further, E(t0) = E0

denotes the initial values, where E0 = Ē0. Moreover, Ei(t)
stands for the gene-expression level (concentration rate)
of the ith gene at time t, and Ei(t) denotes anyone of
the first n coordinates in the d-vector E of genetic and

environmental states. We write G := {1, ..., n} for the set
of genes.

There is a collection of types of Eqn. (7) representing
the dynamical system on the gene-expressions and having
the following forms given in Chen et al. (1999); Gebert
et al. (2004, 2006, 2007); Sakamoto and Iba (2001); Taştan
(2005); Taştan et al. (2005); Weber et al. (2008b); Yılmaz
(2004):

(i)

Ė = ME, (8)

where M is an (n×n)-constant matrix and E is the (n×
1)-vector representing the expression level of individual
genes.

(ii)

Ė = M(E)E (9)

is a continuous differential equation and the matrix
M may depend on E. This dynamical system refers
to the n genes and their interaction alone so that the
matrix M is an (n×n)-matrix with entries as functions
of polynomials, exponential, trigonometric, splines or
wavelets containing some parameters to be optimized.

(iii) In Yılmaz (2004), an extended version of the model
given by Eqn. (9) is derived to emphasize the nonlinear
interactions with the environment. Affine linear shifts
terms are added in this extended model. To keep the
recursive iteration idea, that is presented in Gebert et al.
(2006), by these shifts, Eqn. (9) is below reconstructed
from the following system that includes an affine addi-
tion (Weber et al. (2008b); Taştan (2005); Uğur et al.
(2009); Taştan et al. (2005)):

Ė = M(E)E + C(E). (10)

Here, C(E) is an additional column vector representing
environmental perturbations or contributions and pro-
vides a more accurate data fitting (cf. Yılmaz (2004)
for the case of a constant C). In the extended model
represented by Eqn. (10), the dimension of the vector
E is increased to n + m by considering the m-vector
Ě(t) = (Ě1(t), Ě2(t), . . . , Ěm(t))T , which represents m
environmental factor affecting the gene-expression levels
and their variation. To represent the weights of the
effect of the jth environmental factor Ěj on the gene-

expression data Ei, the (n × m)-weight matrix M̌(E)
is introduced so that the vector C(E) can be written
as C(E) = M̌(E)Ě, where M̌(E) is called as the gene-
environment matrix and its entries cij are the weights.
Therefore, the gene-environment network described by
the dynamic equation in (10) becomes

Ė = M(E)E + M̌(E)Ě. (11)

Finally, the extended initial value problem can be writ-
ten in a multiplicative form as follows:

Ė = M(E)E, E0 = E(t0) =

[
E0

Ě0

]
, (12)

where

E :=

[
E
Ě

]
, M(E) :=

(
M(E) M̌(E)

0 0

)
, (13)

are an (n + m)-vector and (n + m) × (n + m)-matrix,
respectively. The other versions of the extended gene-
environment network in Eqn. (10) is studied in Weber
et al. (2008a,b, 2009b).



The models given by the continuous dynamical equations
in (i), (ii) and (iii) can be written in general as (Uğur and
Weber (2007); Weber et al. (2008a,b, 2009b))

Ė = M(E)E, (14)

with the initial value E0 = E(t0), where E and E0 are
(d×1)-vectors. The (d×d)-matrix M(E) has entries which
contain parameters to be estimated, see Aster et al. (2004);
Hastie et al. (2001). The entries of M(E), which can
be polynomial, trigonometric, exponential, but otherwise
logarithmic, hyperbolic, spline, etc., represent the growth,
cyclicity or other kinds of changes in the genetic or
environmental concentration rates that we suppose by any
kind of a priori information, observation or assumption
(Gebert et al. (2004)).

4. DISCRETIZATION SCHEMES FOR THE
TIME-DISCRETE MODELS

4.1 Formulation of the Schemes

To approximate the time-continuous models and equations
listed in Section 3, discretization schemes can be used to
obtain the numerical solution at a discrete set of time
points. It is important to choose the appropriate method
to be applied. Firstly, the Euler’s method was used in
the time-discretization for the gene-expression patterns; it
has been seen that Euler’s method is slow and inaccurate
(see Dubois and Kalisz (2004) for further information).
Then, Runge-Kutta methods were introduced in Ergenç
and Weber (2004) and, specifically, the 2nd order Heun’s
method was studied in Taştan (2005); Taştan et al. (2005)
known as the simplest Runge-Kutta approach. In terms
of rounding error and truncation error, the choice of the
method in the numerical derivations plays an important
role. Comparing with the Euler’s method, Runge-Kutta
methods have advantages in truncation error, and in
stability which is closer to the stability of the time-
continuous model, and in implementation (Heath (2002)).
In this paper, we study 4th order classical Runge-Kutta
method in addition to the newly derived 3rd order Heun’s
method in Defterli et al. (2010) for the discretization of the
time-continuous models to improve the rate of convergence
and accuracy.

In the most general model of gene-environment network
that is given by Eqn. (14), we apply the 3rd order Heun’s
method and 4th-order classical Runge-Kutta method re-
spectively and formulate our time-discrete model as fol-
lows:

(1) by 3rd-order Heun’s method:

E(k+1) = E(k) +
hk

4
(k1 + 3k3), (15)

k1 = M(E(k))E(k),

k2 = M(E(k) +
hk

3
k1)(E

(k) +
hk

3
k1),

k3 = M(E(k) +
2hk

3
k2)(E

(k) +
2hk

3
k2).

Then, we get the time-discrete equation as

E(k+1) = M(k)E(k), (16)

where

M(k) := I +
hk

4
M(E(k)) + M(E(k) +

2hk

3
M(T(k))T(k))

×{
3hk

4
I +

h2
k

2
M(T(k)) +

h3
k

6
M(T(k))M(E(k))},

and T(k) = E(k) + hk

3 M(E(k))E(k).

(2) by 4th-order classical Runge-Kutta method:

E(k+1) = E(k) +
hk

6
(k1 + 2k2 + 2k3 + k4), (17)

k1 = M(E(k))E(k),

k2 = M(E(k) +
hk

2
k1)(E

(k) +
hk

2
k1),

k3 = M(E(k) +
hk

2
k2)(E

(k) +
hk

2
k2),

k4 = M(E(k) + hkk3)(E
(k) + hkk3);

which can be rewritten as

E(k+1) = E(k) +
hk

6
M(E(k))E(k)

+ {
hk

3
M(Z(k)) +

h2
k

6
M(Z(k))M(E(k))}E(k)

+ {
hk

3
M(V(k)) +

h2
k

6
M(V(k))M(Z(k))

+
h3

k

12
M(V(k))M(Z(k))M(E(k))}E(k)

+
hk

6
M(E(k) + hkM(V(k))E(k)

+
h2

k

2
M(V(k))M(Z(k))Z(k))

× {I + hkM(V(k)) +
h2

k

2
M(V(k))M(Z(k))

+
h3

k

4
M(V(k))M(Z(k))M(E(k))}E(k), (18)

where Z(k) = E(k) + hk

2 M(E(k))E(k), and V(k) =

E(k) + hk

2 M(Z(k))Z(k). The time-discrete equation is
obtained as

E(k+1) = M(k)E(k), (19)

with the matrix M(k) defined as follows:

M(k) := I +
hk

6
{M(E(k)) + 2M(Z(k)) + 2M(V(k)) + M(T(k))}

+
h2

k

6
{M(Z(k))M(E(k)) + M(V(k))M(Z(k))

+M(T(k))M(V(k))} +
h3

k

12
{M(V(k))M(Z(k))M(E(k))

+M(T(k))M(V(k))M(Z(k))}

+
h4

k

24
{M(T(k))M(V(k))M(Z(k))M(E(k))},

where T(k) = E(k) + hkM(V(k))V(k).

The approximate values of the next state can be obtained
from the previous one by using the above iterative for-
mula. The DNA microarray experimental data and the
environmental items obtained at the time-level tk are
represented by the vector Ē(κ) (κ = 0, 1, . . . , l − 1; l:
the number of biological measurements) in the extended
space. The approximations in the sense of (16) are de-

noted by Ê(κ) (κ = 0, 1, . . . , l − 1), and set Ê(0) = E(0).



The kth approximation or prediction, Ê(k), is calculated

as Ê(k)(:= E(k)) = M(k−1)(M(k−2) · · · (M(1)(M(0)E(0)))),
where hk := tk+1 − tk and k ∈ N0. We obtain our
gene-environment networks by the time-discrete dynamics
using formula (16). The genes and environmental items
are represented by the nodes (vertices) of our network;
the interactions between them are reflected by the edges,
weighted with effects. The significant entry of M(k), say,

m
(k)
ij , is the coefficient of proportionality (i.e., multiplied

by E
(k)
j ). It describes that the ith gene (or environmental

factor) becomes changed by the jth gene (or environmental
factor or the cumulative environmental item) in the step
from time level k to k + 1.

4.2 Corresponding Matrix Algebra

We refer to the canonical form of matrix partitioning, given
in Taştan (2005); Taştan et al. (2005); Uğur and Weber
(2007); Weber et al. (2008b), for the time-continuous
model in Eqn.(12) as

M(E) =

(
M(E) M̌(E)

0 0

)
, (20)

where M(E) and M̌(E) are the matrices having dimen-
sions n×n and n×m, respectively. Herewith, the dimension
of the matrix M(E) is (n + m) × (n + m). Moreover, E =
(ET , ĚT )T and T = (T T , ŤT )T are (n + m)-vectors. The
relations of the genes and the environmental factors, which
describe the structure of the gene and gene-environment
network, are represented by these matrices. The matrices
M(k) will be the basis of the networks. The product of two
such canonical matrices is again canonical (Taştan (2005);
Taştan et al. (2005); Uğur and Weber (2007); Weber et al.
(2008a,b, 2009b)). After some notation and simplification
we find that

(1) by using 3rd-order Heun’s method:

M(k) = I +
hk

4

(
M(E(k)) M̌(E(k))

0 0

)
+

3hk

4

(
A Ã
0 0

)

+
h2

k

2

(
B B̃
0 0

)
+

h3
k

6

(
C C̃
0 0

)
, where

A := M(E(k) +
2hk

3
(M(T (k))T (k) + M̌(T (k))Ť (k))),

Ã := M̌(E(k) +
2hk

3
(M(T (k))T (k) + M̌(T (k))Ť (k))),

B := M(E(k) +
2hk

3
(M(T (k))T (k)

+M̌(T (k))Ť (k)))M(T (k)),

B̃ := M(E(k) +
2hk

3
(M(T (k))T (k)

+M̌(T (k))Ť (k)))M̌(T (k)),

C := M(E(k) +
2hk

3
(M(T (k))T (k)

+M̌(T (k))Ť (k)))M(T (k))M(E(k)),

C̃ := M(E(k) +
2hk

3
(M(T (k))T (k)

+M̌(T (k))Ť (k)))M(T (k))M̌(E(k)),

(21)

and T (k) := E(k) + hk

3 {M(E(k))E(k) +M̌(E(k))Ě(k)},

Ť (k) := Ě(k), and I = Id ((d × d)-unit matrix) with
d = n + m.

(2) by using 4th-order classical Runge-Kutta method:

M(k) = I +
hk

6

(
A Ã
0 0

)
+

h2
k

6

(
B B̃
0 0

)

+
h3

k

12

(
C C̃
0 0

)
+

h4
k

24

(
D D̃
0 0

)
, with

A := M(E(k)) + 2M(Z(k)) + 2M(V (k)) + M(T (k)),

Ã := M̌(E(k)) + 2M̌(Z(k)) + 2M̌(V (k)) + M̌(T (k)),

B := M(Z(k))M(E(k)) + M(V (k))M(Z(k))

+M(T (k))M(V (k)),

B̃ := M(Z(k))M̌(E(k)) + M(V (k))M̌(Z(k))

+M(T (k))M̌(V (k)),

C := M(V (k))M(Z(k))M(E(k)) + M(T (k))M(V (k))M(Z(k)),

C̃ := M(V (k))M(Z(k))M̌(E(k)) + M(T (k))M(V (k))M̌(Z(k)),

D := M(T (k))M(V (k))M(Z(k))M(E(k)),

D̃ := M(T (k))M(V (k))M(Z(k))M̌(E(k)), (22)

where Z(k) := E(k)+hk

2 {M(E(k))E(k)+M̌(E(k))Ě(k)},

V (k) := E(k) + hk

2 {M(Z(k))Z(k) + M̌(Z(k))Ž(k)},

T (k) := E(k) + hk{M(V (k))V (k) + M̌(V (k))V̌ (k)},
Ž(k) = V̌ (k) = Ť (k) := Ě(k), I = Id ((d × d)-unit
matrix) with d = n + m.

Therefore, M(k) has its final canonical block form:

(
M̃(E(k)) ˇ̃M(E(k))

0 Im

)
. (23)

5. THE STUDIED MODEL

The model that we discuss as an example here is repre-
sented by the differential equation

Ė = M(E)E, (24)

that is described in Section 3 and where M is an (n × n)-
constant matrix. Our aim is to compute a gene network
(represented by the matrix M) based on gene expression
data. In order to do this, we solve a MINLP problem that
is derived in the following way.

The objective function of our MINLP problem is the
following (Defterli et al. (2010)):

min
M=(mij)

l∑

k=1

∥∥∥MĒ(k) − ˙̄E(k)
∥∥∥

2

2
, (25)

that means, we want to find a matrix M such that the
distances between the forecasted and the actual observed
values are as small as possible with respect to the ‖ · ‖2-
norm. Here, l is the number of biological measurements

and the ˙̄E(k) are the difference quotients based on the
kth experimental data Ē(k) with step lengths hk between
neighbouring sampling times (Gebert et al. (2004, 2007);
Uğur and Weber (2007)).



Because of a high degree of freedom in the problem, it is
needed to restrict the solution space according to the un-
derlying biological motivation (Gebert et al. (2004, 2006,
2007)). Otherwise, a very big amount of expression data
is necessary to solve the minimization problem in (25).
The values mij are nonnegative since no gene consumes
another one, and mij = 0 means that the two genes i and
j do not interact at all. A constant vector λ ∈ Rn repre-
sents the lower bound for the amount of decrease of the
transcript concentration (Gebert et al. (2004, 2006, 2007))
between two time steps. Therefore, for i, j ∈ G (where
G = {1, 2, . . . , n} is the set of genes but environmental
factors could be included here, too ) we have

mij ≥

{
−λ(i), i = j,
0, i 6= j.

(26)

To obtain a relatively sparse network, it is needed to limit
the maximum outdegree and indegree of each node. In
order not to lose the decomposition property of the mini-
mization problem by limiting the maximum outdegree, we
bound the indegree of each gene i by a given parameter
degmax,i ∈ Z+. So, in order to bound the indegree of each
node, we introduce binary variables yij ∈ {0, 1} in the
subsequent way:

yij =

{
0, if mij = 0,
1, if mij 6= 0.

(27)

We formulate (27) as the following nonlinear constraints
for our model:

(1 − yij) · mij = 0, ∀ i, j ∈ G. (28)

Now, the number of nonzero entries per row of the matrix
M = (mij)1≤i,j≤n can be limited by the degree number,
degmax,i, which is content of the following constraints:

∑

j∈G

yij ≤ degmax,i, ∀ i ∈ G. (29)

After considering all these constraints, we aim to solve the
MINLP problem

min (25), subject to {(26), (28), (29)}, (30)

to proven global optimality.

6. NUMERICAL RESULTS

Here, we numerically solve the problem in (30) within the
model described by (24). We have four different genes and
their expression levels at four different times according to
the Table 1 (from Gebert et al. (2004)). We use an equally-

Table 1. Expression scores of the genes A, B,
C and D at four time points

time / genes A B C D

1 255 250 0 255 = Ē
T

1

2 255 200 50 0 = Ē
T

2

3 255 180 70 255 = Ē
T

3

4 255 170 80 0 = Ē
T

4

spaced time discretization as hk = 1 ∀k = 1, 2, ..., l − 1.
In Defterli et al. (2010), we apply the 3rd-order Heun’s

method to approximate the ˙̄Et according to the above

given data and obtain ˙̄ET
1 = [0 − 50 50 − 255], ˙̄ET

2 =

[0 − 20 20 255], ˙̄ET
3 = [0 − 20 20 − 255].

The constraints in the mixed-integer problem in (30), are
given biologically as

λ(i) = 2, i = 1, ..., 4, degmax,i = 2. (31)

Then, the problem is formulated and solved with the
necessary software (see Defterli et al. (2010) and the
references therein) in order to calculate the following
matrix M :

M =




0 0 0 0
0.26 −0.46 0 0
0.19 0 −0.46 0

1 0 0 −2


 , (32)

where the objective function value of matrix M for (25)
is 92.31. Next, the 3rd-order Heun’s time discretization
formula for our model in (24) is derived as follows

Ek+1 = (I + hkM +
h2

k

2
M2 +

h3
k

6
M3)Ek, (33)

Lastly, by using the obtained matrix M and the iteration
formula in Eqn. (33), Defterli et al. (2010) get the approx-
imate values of gene expressions in the below table:

Table 2. Approximation and extrapolation of
gene expressions

time / genes A B C D

1 255 250 0 255
2 255 211.00 38.99 85
3 255 186.49 63.51 141.67
4 255 171.08 78.92 122.78
5 255 161.39 88.60 129.07
6 255 155.30 94.69 126.98
7 255 151.48 98.52 127.67
8 255 149.07 100.92 127.44
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

23 255 145.00 104.99 127.50
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

100 255 145.00 104.99 127.50

According to the generated time series in Table 2, we can
say that the structural behavior of the obtained results is
almost the same (constant first column, decreasing second
column and increasing third column) with the given data
in Table 1. For the values presented in the last column of
Table 2., instead of an alternating behaviour, we obtain
a damped oscillatory behaviour by using the 3rd-order
Heun’s discretization scheme. The results for the last col-
umn converges to the mean value of 0 and 255. The mean
value that is reached can have two possible explanations:
(i) The gene-expression data shown in Table 1 are cho-
sen as artificial data. The amplitudial maxima for the
alternating gene expression in the last column in Table
2 were chosen at very close time point, which does most
likely not represent a real biological behaviour. For the
present paper, we did not change this in order to be able
to compare our results with those of Gebert et al. (2004)
where Table 1 is given. For our future work, we intend to
use experimentally obtained gene-expression data.
(ii) Nevertheless, fading oscillating gene expression can be
observed in biological systems. One well-known example
is the damped oscillation of circadian rhythm after the
trigger (day-light) has been removed.
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Fig. 1. Approximate results of gene-expressions of all genes
by using Euler’s and 3rd order Heun’s methods.

We presented here Fig. 1, in order to compare the output
coming from both Euler and 3rd order Heun methods
using the calculated matrix M in (32). It is seen that the
results of 3rd order Heun method are convergent and we
reach the stable values after a few time steps. As a further
step in this work, we calculated the approximate results
of gene-expressions by using three different discretization

methods and the same data for ˙̄Et, then compare the
obtained results among them. Therefore, we apply the
same procedure described above for Euler’s method, 2rd
order Heun’s method and 3rd order Heun’s method for the
following fixed data of ˙̄Et:

˙̄ET
1 = [0 − 50 50 − 255],

˙̄ET
2 = [0 − 20 20 255],

˙̄ET
3 = [0 − 10 10 − 255],

(34)

obtained from the data in Table 1 and for the correspond-
ingly calculated matrix M (with objective function value
2.564) in below :

M =




0 0 0 0
0 −0.20 0.38 0

0.19 0 −0.58 0
1 0 0 −2


 . (35)

We present in the following graphs, the generated time
series results for the gene-expression values that we get
from these three different discretization schemes for the
fixed data in (34). The newly derived 4th-order classical
Runge-Kutta method will be compared in our future work.
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Fig. 2. Results of Gene A using different methods for fixed
data
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Fig. 3. Results of Gene B using different methods for fixed
data
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Fig. 4. Results of Gene C using different methods for fixed
data
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Fig. 5. Results of Gene D using different methods for fixed
data

7. CONCLUSION

This research introduces and contributes to mathematical
modeling, prediction and optimization of networks and
systems whose motivations come from the real world.
Within this work, we gave a contribution to an improved
modeling of gene-environment networks, and to the nu-
merical solution of their dynamics. By this, we supported a
better future prediction of how such networks can develop
in time (Hastie et al. (2001)), with important consequences
in living conditions of the people.

In our future studies, we will work on the further improve-
ments of the algorithms and different kinds of rarefications
and combined methods together with the comparative
studies. Moreover, we will combine our new numerical
methods with the concepts of uncertainty and robustness
to make modeling and prediction both more accurate and
more stable.
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T. Ergenç and G.-W. Weber. Modeling and prediction of
gene-expression patterns reconsidered with runge-kutta
discretization. Journal of Computational Technologies,
9(6):40–48, 2004.
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M. Taştan, T. Ergenç, S.W. Pickl, and G.-W. Weber. Sta-
bility analysis of gene expression patterns by dynamical
systems and a combinatorial algorithm. Proc. Interna-
tional Symposium on Health Informatics and Bioinfor-
matics (HIBIT’05), pages 67–75, 2005.



M. Tawarmalani and N.V. Sahinidis. Convexification and
Global Optimization in Continuous and Mixed-Integer
Nonlinear Programming: Theory, Algorithms, Software,
and Applications. Kluwer Academic Publishers, Boston
MA, 2002.

M. Tawarmalani and N.V. Sahinidis. Global optimiza-
tion of mixed-integer nonlinear programs: A theoretical
and computational study. Mathematical Programming,
99(3):563–591, 2004.
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