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Especially after the success of genetic algorithms (GAs), which is influenced by the natural selection 
phenomenon, the last two decades have witnessed an increasing emphasis in the computer science and 
engineering communities  on the  studies  about  nature-inspired computing.  A considerable  number  of 
algorithms  mimicking  some  phenomena  in  nature  have  yielded  a  wide  spectrum  of  applications. 
Algorithms in this class (genetic algorithm, genetic programming, differential evolution, particle swarm 
optimization, ant  colony optimization, etc.),  which have been developed particularly for complicated 
multidimensional continuous and combinatorial optimization problems, together with a literature review 
of  their  applications  in  financial  mathematics  (particularly  application  to  the  portfolio  optimization 
problem and its derivatives) constitute the main theme of this study.
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1. INTRODUCTION

Financial  Mathematics  is  a  flourishing  area  of  modern 
science. The subject has developed rapidly into a substantial 
body of knowledge since the days  of pioneering people of 
this  discipline  such  as  Black,  Scholes  and  Merton.  As  of 
today, numerous applications of financial mathematics have 
become  vital  for  the  financial  institutions,  especially  as 
regards  to  trading,  asset  management,  and  risk  control  of 
complicated financial positions. 

The  basic  mathematics  that  underlies  the  subject  is 
probability  theory,  with  its  strong  connections  to  partial 
differential equations and numerical analysis. On the finance 
side,  the  main  topics  of  importance  are  the  pricing  of 
derivatives,  the evaluation of  risk,  and the management  of 
portfolios. In fact, in today's world, many aspects of capital 
markets management are becoming more quantitatively and 
computationally  sophisticated;  however  it  is  still  a  valid 
argument to say that everything began with derivatives.

As complicated as the problems in consideration get,  or as 
complicated as the approaches/models for handling of these 
problems get,  conventional  tools  or  methodologies  become 
insufficient.  In  this  paper,  we  will  try  to  focus  on  the 
portfolio  optimization  problem,  which  is  one  of  the  main 
topics in financial mathematics. We will try to identify why 
and  when  conventional  methods  become  insufficient,  and 
metaheuristics  (especially  nature-inspired  optimization 
methods) might constitute a remedy.  We will also mention 
the major studies in the literature on this topic.

The  organization  of  the  paper  is  as  follows:  After  this 
introductory section, we will try to revisit  the definition of 
the portfolio  optimization problem with existing models  in 
the literature. In Section 3, we will give brief descriptions of 
some  popular  nature-inspired  optimization  algorithms. 
Section 4 is nothing but a condensed literature review about 
the application of the nature-inspired methods for the solution 
of the portfolio optimization problem. In Section 5, we will 
try to give our concluding remarks. 

2. PORTFOLIO OPTIMIZATION 

Portfolio is nothing but the allocation of wealth (or resources 
in hand) among several assets. Portfolio optimization, which 
addresses the ideal assignment of resources to existing assets, 
has been one of the important research fields in modern risk 
management, or more generally financial management. 

A  fundamental  answer  to  this  problem  was  given  by 
Markowitz  (1952,  1959),  who proposed  the mean-variance 
model,  which  is  now  considered  as  the  basis  of  modern 
portfolio theory. In Markowitz’s approach, the problem was 
formulated as an optimization problem with two criteria: 

-  the  profit  (sometimes  also  referred  to  as  reward  or 
return)  of  a  portfolio  (measured  by  the  mean)  that 
should be maximized, and 

- the risk of the portfolio (measured by the variance of 
return) that should be minimized. 

In the presence of two criteria, there is not a single optimal 
solution to the problem (i.e. a single optimal portfolio), but a 

   



set  of  optimal  portfolios.  Certainly,  there  is  a  trade-off 
between risk and return. 

Since the mean-variance theory of Markowitz, research has 
been  performed  about  extending  or  modifying  the  basic 
model in three directions (Anagnostopoulos et al. 2010): 

(i) the simplification of the type and amount of input data, 
(ii) the introduction of alternative measures of risk, and 
(iii)  the  incorporation  of  additional  criteria  and/or 

constraints. 

In  the following subsections,  we will try to summarize the 
basic  models  extending  that  of  Markowitz  while  trying  to 
identify the differences. 

2.1 Mean-Variance Model

Markowitz’s mean-variance model, in which the variance or 
the standard deviation is considered as a measure of risk, has 
been regarded as a quadratic programming problem. In spite 
of its popularity during the past, the mean-variance model is 
based upon the assumptions that an investor is risk averse and 
that either: 

(i)  the  distribution  of  the  rate  of  return  is  multivariate 
normal, or 

(ii) the utility of the investor is a quadratic function of the 
rate of return (Chang et al. 2009). 

However, neither (i) nor (ii) holds in practice, unfortunately. 
It is now widely recognized that the real world portfolios do 
not  follow  a  multivariate  normal  distribution.  Many 
researchers  suggested  that  one  cannot  blindly  depend  on 
mean-variance  model.  That  is  why  various  risk  measures 
such as semi-variance model, mean absolute deviation model 
and variance with skewness model have been proposed. 

2.2. Semi-variance model

With this model, eventually the variance component of the 
Markowitz’s quadratic objective function can be replaced by 
other  risk  functions  such  as  semi-variance.  With  an 
asymmetric  return distribution, the mean-variance approach 
leads  to  an  unsatisfactory  prediction  of  portfolio  behavior. 
Indeed, Markowitz himself suggested that a model based on 
semi-variance would be preferable.

2.3. Mean absolute deviation model

Konno  and  Yamazaki  (1991)  were  the  ones  who  first 
proposed  a  mean  absolute  deviation  portfolio  optimization 
model  as  an  alternative  to  the  Markowitz  mean-variance 
portfolio selection model, with the advantage of the portfolio 
selection  problem  to  be  formulated  and  solved  via  linear 
programming.  It  has  been  shown  that  this  model  yields 
similar results to the mean-variance model. Moreover, due to 

its  simplicity,  computational  it  outperforms  to  the  mean-
variance model (Konno 2003, Konno and Koshizuka. 2005).

2.4. Variance with skewness

Samuelson  (1958)  was  the  one  who  first  noticed  the 
importance  of  the  third  order  moment  in  portfolio 
optimization.  A  portfolio  return  may  not  be  a  symmetric 
distribution. The distribution of individual asset returns tends 
to  exhibit  a  higher  probability  of  extreme  values  than  is 
consistent with normality.

In  order  to  capture  the  characteristics  of  the  return 
distribution  and  to  provide  further  decision-making 
information to investors, this model includes skewness into 
the  mean-variance  model.  Although  the  existence  of 
skewness  in portfolios has  been demonstrated many times, 
only  a  few  studies  to  date  have  proposed  incorporating 
skewness into the portfolio optimization problem (Chang  et  
al. 2009). Konno and Yamamoto (2005) showed that a mean-
variance  skewness  portfolio  optimization  model  can  be 
solved  exactly  in  a  fast  manner  by  using  the  integer 
programming approach. 

3. NATURE-INSPIRED OPTIMIZATION METHODS

Nature-inspired  optimization methods fall  into  the  class  of 
metaheuristics.  These  are  nothing  but  some  methods 
influenced  by  the  existing  behaviors/phenomena  for  the 
solution of  an optimization-like problem in nature.  A very 
simple source of inspiration is the behavior of a colony or a 
swarm while searching for food. 

In  computer  science,  the  term  metaheuristic  is  used  to 
describe a computational method, which optimizes a problem 
by  iteratively  trying  to  improve  a  candidate  solution  with 
regard to a given measure of quality.  In other words, such 
methods  are  nothing  but  systematical  trial-and-error 
approaches.  Metaheuristics  (sometimes  also  referred  to  as 
derivative-free,  direct  search,  black-box,  or  indeed  just 
heuristic  methods)  make few or  no  assumptions  about  the 
problem (such  as  modality  or  dimension)  being  optimized 
and  can  search  very  large  spaces  of  candidate  solutions. 
Moreover, most of these algorithms by definition are easily 
adaptable  to  parallel  computing,  which  makes  them 
applicable in very large-scale problems.

However,  it  should  be  noted  that  metaheuristics  do  not 
guarantee  an optimal  solution is  ever  found.  On the  other 
hand, for each algorithm, numerous studies (most of which 
are empirical) have been carried out in order to understand 
how  the  algorithm  parameters  should  be  adjusted  for 
increasing the success probability.

   



Originally,  metaheuristics  were  proposed  for  combinatorial 
optimization in which the optimal solution is sought over a 
discrete search-space. An example is the traveling salesman 
problem,  where  the  search-space  of  candidate  solutions 
grows  exponentially  as  the  size  of  the  problem  increases 
which makes an exhaustive search for the optimal solution 
infeasible. Popular metaheuristics for combinatorial problems 
include simulated annealing (Kirkpatrick  et  al. 1983),  tabu 
search  (Glover  1989,  1990),  genetic  algorithms  (Holland 
1975), and ant colony optimization (Dorigo 1992, Dorigo et  
al. 1996, 1997, 1999). 

Later,  metaheuristics  for  problems over  real-valued search-
spaces  were  also  proposed.  In  such  problems,  the 
conventional  approach  was  to  derive  the  gradient  of  the 
function to be optimized, and then to employ gradient descent 
or  a  quasi-Newton  method.  Metaheuristics  do  not  use  the 
gradient or Hessian matrix; hence their advantage is that the 
function  to  be  optimized  need  not  be  continuous  or 
differentiable; moreover, it can also have constraints. Popular 
metaheuristic  optimizers  for  real-valued  search-spaces 
include particle swarm optimization (Kennedy and Eberhart 
1995),  differential  evolution  (Storn  and  Price  1997)  and 
evolution strategies (Rechenberg  1971, Schwefel 1974). 

All algorithms of this sort were initially proposed for single-
objective  problems.  However,  throughout  the  years,  multi-
objective extensions of these algorithms have been proposed. 
One  of  the  early  attempts  was  the  extension  of  simulated 
annealing  to  multi-objective  problems  by  Czyzak  and 
Jaszkiewicz (1998). Another one was that of Hansen (2000) 
for extension of tabu search. In a review article, Ehrgott and 
Gandibleux  (2000)  listed  a  bibliography of  multi-objective 
optimization  approaches  for  combinatorial  problems  (not 
only  considering  metaheuristics,  but  also  the  conventional 
approaches).  In  another  review  article,  Coello  (2006) 
identified the historical development of the research studies 
about  extending  these  algorithms  to  multi-objective 
problems. This review was not limited to the combinatorial 
problems;  on  the  other  hand,  only  the  studies  regarding 
population-based metaheuristics were considered.

In  this  paper,  we  will  focus  on  the  nature-inspired 
metaheuristics  and  their  applications  to  the  portfolio 
optimization problem. In the upcoming subsections, we will 
briefly summarize the most popular and well-known ones.

3.1  Genetic Algorithm

Influenced from the “survival of the fittest” principle in the 
evolution  theory,  Holland  (1975)  proposed  genetic 
algorithms  for  the  solution  of  combinatorial  optimization 
problems. The method simply relies on representation of the 
solution candidates by means of chromosomes, via which the 
relevant  objective  function  is  evaluated.  The  solution 
candidates  constitute  a  population,  which  will  be  evolved 
throughout  the  generations  (with  the  programmer’s 
perspective, the generations correspond to the populations in 

succeeding  iterations).  Performing  these  evaluations  and 
considering  the  fitness  of  each  solution  candidate  (i.e.  the 
value  of  the  objective  function  corresponding  to  that 
candidate), it is decided which candidates deserve to survive 
and to be transferred to the next generation. Certainly, as in 
the evolution process, diversity is added by means of some 
operators  such  as  crossover  (yielding  the  hybridization  of 
high-quality solution candidates) and mutation. 

Even though genetic  algorithm was originally proposed by 
Holland for single-objective combinatorial problems, later it 
has been extended to real-valued optimization problems; even 
to multi-objective optimization problems (such as (Schaffer 
1985, Corne et al. 2000, Zitzler et al. 1999, 2001, Deb 2001, 
Deb  et  al. 2002)).  A  review  by  Coello  (2002)  lists  and 
identifies  the  genetic  algorithm  based  multi-objective 
optimization techniques.

3.2  Genetic Programming

Inspired from the genetic algorithm, Koza (1992) proposed 
the  genetic  programming  approach  in  order  to  achieve  a 
software program with a desired capability defined in terms 
of numerous input-output pairs. The approach is quite similar 
to the genetic algorithms; but this time, the genes inside the 
chromosomes  are  the  building  blocks  (i.e.  the  functions, 
components  or  modules)  of  the  sought  computer  program 
(Sette et al. 2001). 

3.3  Differential Evolution

Extended  from  the  genetic  algorithm,  the  differential 
evolution  is  a  recent  metaheuristic  originally  proposed  by 
Storn  and  Price  (1997)  for  single-objective  continuous 
problems. Again, the method relies on evolutionary operators 
such as crossover and mutation, in addition to the concept of 
so-called  “differential  weight”.  Despite  its  simplicity,  the 
method has so far proven itself in numerous occasions with 
benchmark  problems,  and  outperformed  many  other 
optimization  algorithms.  Later,  many differential  evolution 
variants  for  other  purposes  (i.e.  for  the  solution  of  the 
continuous  and  multi-objective  problems,  etc.)  have  been 
proposed. Unlike other nature-inspired optimization methods, 
it is possible to guarantee the convergence of the trial-error 
procedure imposed by the algorithm. 

3.4  Particle Swarm Optimization

Particle  swarm  optimization  is  a  method  proposed  by 
Kennedy and Eberhart  (1995) after  getting inspired  by the 
behaviours  of  the  animal  colonies/swarms.  Similar  to  such 
swarms  searching  for  the  best  place  for  nutrition  in  3-
dimensional space, this method relies on the motions of the 
swarm  members  (so-called  “particles”)  searching  for  the 
global best in an N-dimensional continuous space. This time, 
the position of each  particle  is  a  candidate solution of  the 
problem in hand. Each member of the swarm has: 

   



-  a  cognitive  behavior  (i.e.  having  tendency  to  return 
positions related with good memories); as well as 

- a social behavior (i.e. having tendency to go where the 
majority of the swarm members are located); in addition 
to 

- an exploration capability (i.e. the tendency for random 
search throughout the domain). 

The balance among these three tendencies is the key for the 
success and the power of the method. So far, the method has 
been  successfully  applied  to  various  multidimensional 
continuous and discontinuous problems. In fact, the results of 
a similar analysis were recently reported by Poli (2008) in a 
review article (More detailed version of this review is also 
available on the web (Poli 2007)). The power of the method 
is  its  simplicity  allowing  implementation  in  almost  every 
platform and every programming language as well as ease of 
parallelization.

Even  though  particle  swarm  optimization  was  originally 
proposed for single-objective continuous problems, later its 
discrete variants have also been published. Also, so far more 
than  30  versions  of  multi-objective  particle  swarm 
optimization extensions have been proposed, most of which 
have been reviewed by Reyes-Sierra and Coello (2006).

3.5  Ant Colony Optimization

Ant  colony  optimization  is  another  algorithm  originally 
proposed by Dorigo (1992) and later by Dorigo et al. (1996, 
1997, 1999) for the solution of combinatorial problems such 
as the traveling salesman or the shortest path. 

Dorigo  was  inspired  from  the  behaviors  of  ants  while 
transporting food to their nests. The algorithm depends on the 
following principles: Initially, ants have random movements; 
but  upon  finding  food  they  lay  down  pheromone  trails 
returning  home.  Other  ants  have  tendency  to  follow these 
pheromones instead of keeping their random behavior. By the 
time, all pheromone trails start to evaporate and reduce their 
attractiveness. However, since pheromones over shorter paths 
are traced faster, and new pheromones are laid over the same 
path;  new  pheromone  laying-out  rate  overcomes  the 
evaporation rate.  Due to this positive feedback mechanism, 
the  popularity  of  shorter  paths  (i.e.  pheromone  density) 
increases in an accelerated manner. This is the key of success 
of  the ant  colony optimization for  the solution of  relevant 
problems. 

Similarly,  continuous  and  multi-objective  variants  of  ant 
colony optimization have later been published.

3.6  Other Nature-Inspired Optimization Methods

There are some other recent algorithms with self-descriptive 
names  such  as  the  bees  algorithm  (Pham  et  al.  2006), 
artificial  bee  colony  algorithm  (Karaboga  et  al. 2007), 
saplings growing-up algorithm (Karci 2007), intelligent water 

drops  algorithm (Shah-Hosseini  2009)  etc.,  which  are  still 
waiting for further research and promotion. 

4. APPLICATION OF METAHEURISTICS TO THE 
PORTFOLIO OPTIMIZATION PROBLEM: A 

LITERATURE REVIEW

As stated before, portfolio optimization problem is actually a 
constrained multi-objective optimization problem. But in the 
early  decades  (between 50s and early 90s),  due to  lack of 
powerful  methods  and  computational  power,  the  problem 
used to be handled with oversimplifying assumptions. With 
the diffusion of metaheuristics to all disciplines, researchers 
started  to  apply  them to  problems  of  their  own  branches. 
Eventually, portfolio optimization took its share. As of 2001, 
as pointed by Chen and Kuo (2001), there have been about 
400 publications regarding the application of metaheuristics 
to problems in economy and finance. Certainly, publications 
related to portfolio optimization constituted the majority.

Early  attempts  were  applications  of  metaheuristics  to  the 
single-objective  portfolio  optimization  problem  with  no 
constraints.  Dueck  and  Winker  (1992)  used  a  local-search 
based heuristic for the solution. Arnone et al. (1993) were the 
ones  who  first  applied  genetic  algorithm  to  the  portfolio 
selection problem. Later  research can be considered in two 
main directions:

(i) incorporation of constraints in the problem model, 
(ii) handling the problem as a multi-objective one.

Regarding the studies about incorporation of the constraints 
in the problem: Jobst et al. (2001) and Fieldsend et al. (2004) 
discussed  the  computational  aspects  in  presence  of  the 
discrete asset choice constraints. Chang et al. (2000) applied 
tabu search, simulated annealing and genetic algorithm to the 
portfolio  optimization  problem  considering  the  cardinality 
constraint;  afterwards,  Schaerf  (2002)  and  Kellerer  et  al. 
(2003)  applied  local  search  algorithms;  Streichert  et  al. 
(2003)  and  Diosan  (2005)  applied  various  evolutionary 
algorithms for the same purpose. 

One of the very early multi-objective solution approaches in 
portfolio optimization problem was by Lin et al. (2001), who 
applied genetic algorithm for this purpose. Crama and Schyns 
(2003) disussed how to apply simulated annealing in complex 
portfolio optimization problems. Ong et al.  (2005) applied a 
multi-objective evolutionary algorithm, whereas Armananzas 
and  Lozano  (2005)  applied  multi-objective  greedy-search, 
simulated  annealing  and  ant  colony  optimization  by 
considering  the  portfolio  optimization  problem  as  a  tri-
objective  one.  Doerner  et  al.  (2001)  applied  ant  colony 
optimization; Subbu et al. (2005), Diosan (2005) and Chiam 
et  al. (2008)  applied  various  evolutionary  algorithms; 
Kendall  and Su applied particle  swarm optimization;  Yang 
(2006)  applied  the  genetic  algorithm.  Application  of 
differential evolution to the field is brand new. As of today, 
Ardia et al. (2010) and Krink et al. (2010) are the ones who 
have  so  far  applied  differential  evolution  to  the  portfolio 
optimization problem. 

   



For deeper  and broader  surveys of the literature,  interested 
readers can take a look at Schlottmann and Seese (2004) or 
Tapia and Coello (2007) the on application of multi-objective 
evolutionary algorithms in economics and finance in general.

Application  of  metaheuristics,  or  more  specifically  nature-
inspired  methods  to  similar  problems  such  as  index  fund 
management,  credit  portfolio  construction,  etc.  is  also 
possible. Orito  et al. (2003), Kyong  et al.  (2005), Oh  et al.  
(2005,  2006)  used  genetic  algorithms  for  the  index  fund 
management problem. 

Another  issue  in  portfolio  management  is  the  cost  of 
transactions, which is usually neglected during the modeling 
of the problems. It is possible to incorporate this factor while 
applying  metaheuristics.  For  example,  Chen  and  Zhang 
(2010) applied a particle swarm optimization variant to the 
portfolio  optimization  problem  considering  the  transaction 
costs.

Meanwhile,  genetic programming also found application in 
finance. Potvin et al. (2004) applied genetic programming for 
generating  trading  rules  in  stock  markets;  more  recently, 
Etemadi  et  al. (2009)  used  it  for  bankruptcy  prediction, 
meanwhile Chen et al. (2010) used a time adaptive version of 
the technique to portfolio optimization. 

5. CONCLUSIONS

Metaheuristics,  more  specifically  nature-inspired 
optimization  algorithms  constitute  powerful  means  for  the 
solution of existing problems in economy and finance.  The 
main factors promoting the usage of such algorithms can be 
summarized as follows:
- The algorithms make no assumptions (or require no a priori 
information) about the objective function.
- They do not require the objective function to be continuous 
or differentiable. 
- They can handle complicated models with constraints.
- All of them have variants for continuous and combinatorial 
problems.
-  All  of  them  have  variants  extended  for  multi-objective 
problems.
- Almost all of them support parallelization, which yields the 
solution of very large-scale problems. 

Eventually, the literature is full of a plethora of publications 
about  successful  applications  of  such  algorithms  to  the 
problems, which could not have been considered and handled 
previously with conventional  approaches.  By observing the 
rate  of  increase  in  such  publications,  it  can  be  easily 
forecasted that more and more applications will occur in the 
near future.
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