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Abstract: The Landau-Ginzburg phenomenological theory of ferroelectrics together with
Landau-Khalatnikov equations of motion are applied to the problem of studying the interaction
of electromagnetic radiation and a ferroelectric nanoscale thin film on a metal substrate. A
cornerstone of the analysis is the minimization of a Gibb’s free energy functional that takes into
account the free energy cost of the boundaries of the thin film via a gradient term that is non
zero when the polarization in the film varies. The minimization procedure involves the calculus
of variations and leads to an Euler-Lagrange equation that can be solved to find the equilibrium
polarization in the film. With this found the nonlinear dynamical equations that describe the
response to an incident electromagnetic field are solved by using a perturbation expansion of the
polarization expanded about the equilibrium polarization in powers of the incident electric field.
The solution method is similar to the Frobenius method. We pick out a second order nonlinear
effect from the expansion for second harmonic generation; calculate a reflection coefficient for
the harmonic generation term and investigate how the finite thickness of the film influences the
reflection coefficient. This paves the way for experimental studies using far-infrared or terahertz
reflection measurements (the ferroelectric film is resonant in the far infrared and terahertz
ranges) that may help to elucidate the nature of the nonlinear interactions.
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1. INTRODUCTION

In this paper the Landau-Devonshire phenomenological
theory of ferroelectrics is used together with the Maxwell
wave equation to calculate the second-harmonic genera-
tion (SHG) component of the nonlinear interaction of a
ferroelectric-thin film with incident electromagnetic radi-
ation. However it is the electric field part of the wave that
is responsible for most the interaction since the magnetic
interaction is small enough to neglect. So in what follows
are main concern is with the electric field and the way
in which it interacts on the macroscopic scale with the
ferroelectric film whose presence on this scale is introduced
into the Maxwell equations through the concept of polar-
ization, which is a macroscopic quantity defined defined
on that scale as dipole moment per unit volume. The work
here is particularly concerned with finding the reflection
coefficient associated with the SHG field generated in the
film.

There are several motivations for this work. One is that us-
ing SHG has been found to be a sensitive optical technique
for characterizing the domain structure of ferroelectric
thin films. See Bottomley et al. (2001), Gopalan and Raj
(1996), Barad et al. (2001), and Mishina et al. (2003).
Another is that there is a strong interest in ferroelectric
thin films due to applications in ferroelectric random ac-
cess memories (FERAMs) (Scott (1998), Auciello et al.
(1998) and Scott (1992)), and it is important to study
how the film surfaces affect the polarization, especially at
the nanoscale.

The approach taken in this paper is to calculate the SHG
interaction with a ferroelectric film using a phenomenolog-
ical theory based on Landau-Devonshire theory (discussed
by Lines and Glass (1977), for example) which models the
overall ferroelectric properties including the static equilib-

rium polarization and Landau-Khalatnikov equations to
describe the dynamic response of the polarization to an
external electric field. Other work on ferroelectric films
using a similar theoretical approach has been done by
Stamps and Tilley (1999), Chew et al. (1999), Tan et al.
(2000), Chew et al. (2001), Ong et al. (2001), Murgan et al.
(2004) and Webb (2006).

We will consider a nanoscale ferroelectric film, above which
is air and the bottom surface of the film is in contact with a
metal substrate.The coordinate system will be chosen such
that the air-film interface is at z = 0, and the film-metal
interface is at z = −L, where L is the film thickness. The
speed of propagation in air will be taken to be equal to the
speed of light in vacuum at all frequencies. It is of interest
to consider a conducting substrate because in applications
such as FERAMs electrical contacts with the film need to
be made.

2. FORMALISM

The Landau-Devonshire theory is based on the Gibbs free
energy thermodynamic potential expanded in powers of
the polarization P (see Lines and Glass (1977)). For a
ferroelectric film of thickness L in which the polarization
is allowed to vary with distance into the film such that
P = P (z), this takes the form of a functional given by

F/S =

∫ 0

−L
f(P, dP/dz) dz+(D/2)[P 2(−L)/δ1+P 2(0)/δ2],

(1)
where

f(P, dP/dz) = (1/2)AP 2 + (1/4)BP 4 + (1/6)CP 6

+ (D/2)(dP/dz)2 −E ·P (2)

and
A = a(T − T0). (3)



In the ferroelectric phase there is a spontaneous polar-
ization that exists when the applied field E is zero. The
spontaneous polarization depends on temperature. Here
we consider the case in which the transition from the fer-
roelectric phase to the paraelectric phase (no spontaneous
polarization) is second order. In this case the transition
occurs at a single temperature, T0 = TC , where TC is
the Curie temperature, which is the temperature at which
the second-order phase transition occurs; B is a constant
greater than zero and C = 0. For first-order transitions,
not considered here, B < 0 and C > 0. The inclusion
of the C terms creates a discontinuous jump when the
phase changes from ferroelectric to paraelectric, consistent
with what is observed experimentally for first order phase
transitions. Second order transitions do not exhibit such
a discontinuity; instead the polarization approaches zero
continuously as TC → 0. See Strukov and Lenanyuk (1998)
for a more thorough discussion. In both cases a is a positive
constant (the inverse of the Curie constant). The temper-
ature variation modeled by (3) is derived by considering
the temperature function as a Taylor series to first order
in T . However this approximation may break down at
temperatures very far from, or close to the transition
temperature. The gradient term in (D/2)(dP/dz)2 in f
takes into account the free-energy cost of spatial variations
in the polarization which are important near the surfaces
(in the bulk the spontaneous polarization is constant), and
the terms after the integral in (1) are surface energy terms
that arise from integrating over the film surfaces. The
parameters δ1 and δ2, as discussed by Webb (2006), are
extrapolation lengths used to set boundary conditions for
the spontaneous polarization at the surfaces. If the media
above and below the film are the same then δ1 = δ2. These
are size-effect parameters introduced due to the need for
having boundary conditions. And they, along with the
constants B and C are phenomenological parameters; they
are not derived from first principles, but rather they are
considered as parameters who’s values could be found from
experimental data. An interesting discussion of related
size-effects is given by Tagantsev et al. (2008)

The key idea for finding spontaneous polarization, denoted
by P0, is that it is the function (of z) that minimizes the
free energy in (1) under the condition E = 0. Finding P0

is thus a calculus of variations problem that leads to the
Euler-Lagrange equation (for our case in which C = 0):

D
d2P0

dz2
−AP0 −BP 3

0 = 0 (4)

with boundary conditions

dP0/dz − P/δ1 = 0 at z = −L (5)

and

dP0/dz − P/δ2 = 0 at z = 0. (6)

An analytical solution to this problem can be found
that gives P0(z) in terms of elliptic functions (see Tilley
and Zeks (1984), Ong et al. (2001) and Webb (2006)
for details). It can be seen from (5) and (6) that an
extrapolation length with a negative value implies that
P0(z) increases as the corresponding surface is approached;
conversely a positive value causes a decrease in P0(z).

Dynamic coupling to the electromagnetic field (via E)
is described by means of the Landau-Khalatnikov (LK)
equations of motion,

m
∂2P

∂t2
+γ

∂P

∂t
= −∇δ F = −

(
D
∂2P

∂z2
−AP−BP3

)
+E,

(7)
in which m and γ are, respectively, mass and damping
parameters, and ∇δ = x̂(δ/δPx) + ŷ(δ/δPy) + ẑ(δ/δPz),
which involves variational derivatives, and we introduce
the term variational gradient-operator for it, noting that x̂,
ŷ and ẑ are unit vectors along positive x, y and z, respec-
tively. Note that this equation is analogous to the equation
of motion for a damped mass-spring system undergoing
forced vibrations. However here it is the electric field E
that provides the driving impetus for P rather than a force
explicitly. Also note that the potential term ∇δ F |E=0 is
analogous to a nonlinear force-field (through the nonlinear
P terms in (2)) rather than the linear Hook’s law force
commonly employed to model a spring-mass system. The
variational derivatives are given by

δF

δPx
=
(
A+ 3BP 2

0

)
Qx +B

(
2P0Q

2
x + P0Q

2 +Q2Qx
)

−D∂
2Qx
∂z2

− Ex
(8)

and

δF

δPα
=
(
A+BP 2

0

)
Qα +B

(
2P0QxQα +Q2Qα

)
−D∂

2Qα
∂z2

− Eα, α = y or z,

(9)

where Q2 = Q2
x + Q2

y + Q2
z, and P has been written as

a sum of static and dynamic parts, Px = P0(z) + Qx,
Py = Qy, and Pz = Qz. In doing this we have orientated
P0(z) so that it is parallel to the film surfaces in the
direction of positive x. This is done to simplify the problem
so that we can focus on the essentials of SHG in subsequent
calculations. It should be noted that if P0(z) had a z
component, depolarization effects would need to be taken
in to account in the free energy, and a theory for doing
this has been presented by Tilley (1993). The in-plane
orientation avoids this complication. The LK equations in
(7) are appropriate for displacive ferroelectrics that are
typically used to fabricate thin films (see Lines and Glass
(1977) and Scott (1998) for more on this), with BaTiO4

being a common example. Displacive ferroelectrics have a
spontaneous polarization due to a lattice displacement and
the dynamic response is due lattice vibrations.

The LK equations describe the dynamic response of the
polarization to the applied field. Also the polarization
and electric field must satisfy the inhomogeneous wave
equation derived from Maxwell’s equations. This wave
equation is:

∂2Eα
∂x2

− ε∞
c2

∂2Eα
∂t2

=
1

c2ε0

∂Qα
∂t2

, α = x, y, or z. (10)

Here, c is the speed of light in vacuum, ε0 is the permit-
tivity of free space, and ε∞ is the contribution of high
frequency resonances to the dielectric response. The rea-
son for including it is as follows. Displacive ferroelectrics,
in which it is the lattice vibrations that respond to the
electric field, are resonant in the far infrared and terahertz
wave regions of the electromagnetic spectrum and that is
where the dielectric response calculated from the theory
here will have resonances. There are higher frequency



resonances that are far from this and involve the response
of the electrons to the electric field. Since these resonances
are far from the ferroelectric ones of interest here they can
be accounted for by the constant ε∞.

Solving equations (8) to (10) for a given driving field
E will give the relationship between P and E, and the
way that the resulting electromagnetic waves propagate
above and in the film can be found explicitly. However it
is also necessary to postulate a constitutive relationship
between P and in the perturbation-expansion approach
(see Butcher and Cotter (1990) ) that will be used here it
takes the form

Q = P−P0 = Q(1)(t) + Q(2)(t) + . . . , (11)

where Q(1)(t) is the linear with respect to the input field,

Q(2)(t) is quadratic, and so on for higher order terms. For
SHG it is not necessary go beyond the quadratic term,
however. The way in which he the electric field enters is
through time integrals and response function tensors as
follows:

Q(1)(t) = ε0

∫ +∞

−∞
dτ R(1)(τ) ·E(t− τ) (12)

and

Q(2)(t) = ε0

∫ +∞

−∞
dτ1∫ +∞

−∞
dτ2 R(2)(τ1, τ

′
1) : E(t− τ1)E(t− τ2).

(13)

The time integrals appear because in general the response
is not instantaneous; at any given time it also depends
on the field at earlier times—there is temporal dispersion.
Analogous to this there is spatial dispersion which would
require integrals over space. However this is often negligi-
ble and is not a strong influence on the thin film calcula-
tions that we are considering. For an in-depth discussion
see Mills (1991).

Of particular interest is the reflection coefficient since
this can be measured using far infrared or terahertz
spectroscopy. In such experiments it is convenient to use
a single frequency input field whose frequency can be
changed and the corresponding variations in reflectivity
can be measured. Therefore it is useful to consider a single
frequency sinusoidal form for E, which is what will be done
in the calculations that follow.

3. CALCULATION OF THE REFLECTION
COEFFICIENT FOR SHG

3.1 General Considerations and Simplifications

The incident field is taken to be a plane wave of frequency
ω and wave number above the film has a magnitude
q0 = ω/c, since the region above the film behaves like
a vacuum in which all frequencies propagate at c. We
only consider normal incidence and note that the field
is traveling in the negative z direction in the coordinate
system used here in which the top of the film is in the
plane z = 0, the bottom in the plane z = −L. Therefore
q0 = q0(−ẑ) and the incident the incident field can be
represented by

(1/2)E0e
iq0(−ẑ)·zẑe−iωt + c.c.

= (1/2)E0e
−q0ze−iωt + c.c., (14)

where c.c. means complex conjugate and

E0 = E0[(E0x/|E0|)x̂ + (E0y/|E0|)ŷ], (15)

written in this way because in general E0 is a complex
amplitude. However, we will take it to be real, so that
other phases are measured relative to the incident wave,
which, physically, is no loss of generality. The complex
conjugate ensures the reality of the incident field. However
it is easier to deal with complex phasor representations
for the calculations, after which the actual fields can be
reconstructed from equations of the form of (14). The
phasor forms of all the equations can be derived from a
Fourier transform, that transforms the electric field, for
example, according to:

E(t) =

∫ +∞

−∞
dω′E(ω′)e−it, (16)

where

E(ω′) =
1

2π

∫ +∞

−∞
dτ E(τ)e−iω

′t. (17)

Note that the single frequency ω in (14) is constant with
respect to the ω′ integral.

With the formalism in place it is now possible to express
the problem in complex phasor form. Before doing so
though we pause to discuss two further simplifications that
will be used: (i) The spontaneous polarization P0 will be
assumed to be constant throughout the film, corresponding
to the limit as δ1 and δ2 approach infinity in the boundary
conditions, (5) and (6). The coupled equations, (8) to (10)
can then be solved analytically. Insights into the overall
behavior can still be achieved, despite this simplification,
and the more general case when P0 = P0(z), which implies
a numerical solution, will be dealt with in future work.
(ii) Only an x polarized incident field will be considered
(E0y = 0 in (15)) and the symmetry of the film’s crystal
structure will be assumed to be uniaxial with the axis
aligned with P0 = P0x̂. Under these circumstances Eα =
Qα = 0, α = y, z, meaning that the equations that need
to be solved are reduced to (8), and (10) for α = z.

It is a simple matter to find the bulk P0: the free energy for
the bulk does not include an integral and, as is brought out
by Lines and Glass (1977), for the second-order transitions
that we consider here, it is,

Fbulk = 1
2AP

2 + 1
4BP

4. (18)

Minimizing by setting dFbulk/dP = 0 yields

P0 =

{
|A|/B if T < Tc,

0 if T > Tc,
(19)

for real P0(the reality of P0 is a physical requirement).

The problem can now be solved analytically. Through
(11) to (13) it can be seen that, for the single frequency
applied field, there will be linear terms corresponding

to frequency w and, through Q(2) in (13), there will
be nonlinear terms coming from products of the field
components (only those involving E2

x for the case we are
considering), each involving a frequency 2ω—these are the
SHG terms (higher order terms will not be considered). It
is natural to split the problem in to two parts now: one for



the linear terms at ω, the other for the SHG terms at 2ω.
Since we are primarily interested in SHG it may seem that
the linear terms do not need to be considered. However, the
way that the second harmonics are generated is through
the nonlinear response of the polarization to the linear
applied field terms. This is expressed by the constitutive
relation in (11), from which it is clear that products of
the linear terms express the SHG, which implies that the
linear problem must be solved before the SHG terms can
be calculated. This will be much more apparent in the
equations below. In view of this we give the phasor form
of the problem in two parts, one for the linear terms, the
other for the SHG terms.

3.2 Complex Phasor Form of the Problem for the Linear
Terms

For the linear terms at frequency ω, we seek the solution
to the coupled differential equations, (8) and (10) with
a constitutive relation given by (12) and (13), and a P0

given by (19). This is expressed in complex phasor form
by a Fourier transform given in (16) and (17).

The resulting coupled differential equations are

D
d2Qω

dz2
+M(ω)Qω + Eω = 0, (20)

d2Eω

dz2
+
ω2ε∞
c2

Eω +
ω2

c2ε0c2
Qω = 0, (21)

for 0 > z > −L, where the frequency dependence has
been explicitly denoted for Q and E, and this also serves
to denote that they are complex phasors rather than real
quantities. Furthermore,

M(ω) = mω2 + iωγ − 2BP 2
0 . (22)

Taking the ansatz eiqz for the form of the Qωand
Eωsolutions, non trivial solutions (which are the physically
meaningful ones) are obtained providing that the determi-
nant of the coefficient matrix—generated by substituting
the ansatz into (20) and (21)—satisfies∣∣∣∣∣∣

1 −Dq2 +M(ω)

−q2 +
ω2ε∞
c2

ω2

ε0c2
= 0

∣∣∣∣∣∣ = 0. (23)

This leads to a quadratic equation in q2 whose solution is

(qωj )2 =
g1(ω)(−1)j+1

√
g2(ω)

2D
, j = 1, 2, (24)

where

g1(ω) =
Dω2ε∞
c2

+M(ω), (25)

g2(ω) = g21l(ω)− 4Dω2

ε0c2
[ε∞ε0M(ω)− 1] , (26)

and the ω dependence of the q solutions has been made
explicit with the superscript. The general solution of the
coupled equations (20) and (21) for the electric field is
therefore,

Eω(z) = a1E0e
−iqω1 za2E0e

iqω1 z

+ a3e
iqω2 z + a4e

−iqω2 z (27)

= E0

4∑
j=1

aje
(−1)jqωnj

z, (28)

where nj = dj/2e. It is convenient to include the incident
amplitude E0 as a factor expressing the constants as this
will cancel when the boundary conditions are applied so
that the a1 to a4 amplitudes are the wave amplitudes
of these four waves in the film relative to the incident
amplitude. The first term is a transmitted wave traveling
through the film towards the metal boundary (in the
direction of −z in our coordinate system), the second is
the wave reflected from the metal boundary and traveling
back towards the top of the film corresponding to the
wave vectors −qω1 and qω1 , respectively. Similar pattern
follows for the last two terms in (28) for the ±qω2 modes.
It is interesting to note that the presence of both ±qω1
modes and ±qω2 is a direct result of the D term in the free
energy that is introduced to account for variations in the
polarization. In this sense are calculation, despite using
a constant P0 value, is still incorporating the effects of
varying polarization (the full effects, as discussed above,
involve numerical calculations which will not be done in
this paper). If there was no D term then only the ±qω1
modes would be present and the character of the solution
would be different.

Above the film, alongside the incident wave there is a
reflected wave. Thus we have

EωI (z) = E0e
−iq0z + rE0e

iq0z, z > 0 (29)

where r is the linear reflection coefficient (there will also be
a wave from SHG which is considered in the next section).

To complete the solution of the linear problem it remains
to calculate the aj and r amplitudes (5 in total) by
applying boundary conditions. The boundary conditions
are the usual electromagnetic boundary conditions of
continuity of the electric and magnetic fields, and here,
we will express the continuity of the magnetic field as the
continuity of dE/dz; this follows from the electromagnetic
induction Maxwell equation, ∇×E = −∂B/∂t (since the
film is nonmagnetic B = µ0H not only above the film but
also in the film). The boundary conditions on P in (5)
and (6) will also be used in the limiting case of infinite
extrapolation lengths.

In view of the forgoing the required boundary conditions
are:

EωI (0) = Eω(0),
dEωI
dz

∣∣∣∣
z=0

=
dEω

dz

∣∣∣∣
z=0

,
dQω

dz

∣∣∣∣
z=0

= 0,

(30)

for the top surface, and

Eω(−L) = 0,
dQω

dz

∣∣∣∣
z=−L

= 0, (31)

for the film-metal interface at the bottom. Note that the
electric field boundary condition at the bottom implies
that the metal conductivity is infinite so that no electric
field penetrates the metal. This is a common approxima-
tion for metal boundaries and should be sufficient for our
purposes since the conductivity of the ferroelectric film
is much smaller than for the metal (see Webb (2006) for
more on this). Also the continuity of the magnetic field is
not used at the bottom; it is not required because, with
5 unknowns, 5 boundary conditions are sufficient to find
them.
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Fig. 1. Dimensionless plot of <(qω1 ) and <(qω2 ) (dotted line)
versus frequency for a = 6.8 × 105 V K−1A−1s−1,
D = 2.7 × 10−21 A Kg−1m−1, m = 6.4 ×
10−21 kg m3A−1s−2, L = 40 nm, T/Tc = 0.5, γ =
1.3 × 10−9 A−1V−1m−3, and ε∞ = 3.0. These values
are for BaTiO4, and follow Chew et al. (2001).

Applying the boundary conditions leads to a set of simulta-
neous equations, the solution of which yields expressions
for r and the aj in terms of the other parameters, and
hence solves the linear problem. These equations may be
expressed in matrix form as

M(ω)alin = blin, (32)

where

M(ω) =


1 1 1 1 −1

qω1 −qω1 qω2 −qω2 q0

κω1 κω2 κω3 κω4 0

∆ω
1 ∆ω

2 ∆ω
3 ∆ω

4 0

κω1 ∆ω
1 κω2 ∆ω

2 κω3 ∆ω
3 κω4 ∆ω

4 0

 , (33)

alin = (a1, a2, a3, a4, r)
T
, (34)

blin = (1, q0, 0, 0, r)
T
, (35)

and we define

κωj = (−1)jqωnj

[
(qωnj

)2 − ε∞q20
]
, ∆ω

j = e(−1)
j+1iqnj

L. (36)

The resulting symbolic solution is rather complicated and
will not be given here explicitly. It is easily obtained, how-
ever, with a computer algebra program such as Maxima
or Mathematica. A more efficient approach for numerical
plots is to compute numerical values of all known quan-
tities before solving the matrix equation, which is then
reduced to a problem involving the 5 unknowns multiplied
by numerical constants.

The real parts of the dispersion relations in (24) are plotted
in Fig. 1. for the qω1 and qω2 modes. The qω1 mode is the
usual mode found in dielectrics and the frequency region,
known as the reststrahl region, in which it is zero is where
there are no propagating waves for that mode. However,
it is clear from the plot that the real part of qω2 mode
is not zero in this region and so there will be propagation
leading to a different reflection coefficient than what would
be observed. This is due to the effect of the D term.

In Fig. 2 the magnitude of reflection the coefficient r—
available from the solution to the linear problem—is plot-
ted against frequency. With no D term the reflection coef-
ficient would be 1 in the reststrahl region. It is clear from
the plot that there is structure in this region that is caused
by the qω2 mode. So reflection measurements are a way
of investigating the varying polarization modeled through
the D term. The plot is for a film thickness of 40 nm. So
our model predicts that these effects will be significant for
nanoscale films. It is also expected that structure in this
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Fig. 2. Magnitude of linear reflection coefficient r versus
dimensionless frequency. The lower curve is a scaled
down plot of the dispersion curve for qω1 showing the
reststrahl region. Parameter values as in Fig. 1.

region will be found for the SHG reflection, the calculation
of which which we now turn to.

3.3 Complex Phasor Form of the Problem for the Nonlinear
SHG Terms

The SHG terms come from the second order nonlinear
terms at frequency 2ω and the coupled differential equa-
tions that need to be solved for these terms are

D
d2Q2ω

dz2
+M(2ω)Q2ω + E2ω = 3BP 2

0 [Qω]2, (37)

d2E2ω

dz2
+

2ω2ε∞
c2

E2ω +
(2ω)2

c2ε0c2
Q2ω = 0, (38)

for 0 > z > −L.
It can be seen from this that there will be a homogeneous
solution analogous to the linear solution but now at
frequency 2ω and in addition, due to the term involving
[Qω]2 in (37), there will be particular solutions. [Qω]2 can
be found from the solution to the linear problem for Eω

substituted into (21), and thus the particular solutions to
(37) and (38) can be determined. In this way the general
solution can be shown to be given by

E2
0Λ

4∑
j=1

φje
(−1)jiq2ωnj

z
+ E2

0

4∑
j=1

4∑
k=1

Wjke
iBjkz, (39)

together with,

Wjk =
12BP 2

0Ajk

ε0
[
4q20ε∞ −B2

jk

][
DB2

jk −M(2ω)
] , (40)

Ajk = Snj
Snk

ajak, (41)

sj = (qωj )2 − ε∞ω/c2, (42)

Bjk = (−1)jqωnj
+ (−1)kqωnk

. (43)

It is convenient to include the factor E2
0 in (39) since it will

cancel out later when the boundary conditions are applied.
The factor Λ has been included to make the φj amplitudes
dimensionless so that they are on the same footing as the
aj amplitudes in the linear problem.

Due to the SHG terms in the film there will also be an
SHG field transmitted from the film to the air above, but
since this ultimately exists because of the incident field the
SHG wave above the film is a reflected wave caused by the
incident field. It is expressed by

E2ω
I (z) = E2

0Λρe2iq0z, z > 0, (44)

where ρ is the SHG reflection coefficient.

Again there are 5 unknowns: ρ and the φj , which are also
found by applying the boundary conditions. The particular
solutions make the problem more complex algebraically,
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Fig. 3. SHG reflection coefficient ρ versus dimensionless
frequency. Parameter values are as in Fig. 1.

but in principle the solution method is the same as for the
linear case. Applying the conditions in (30) and (31) leads
to five simultaneous equations that can be expressed as

M(2ω)aSHG = bSHG, (45)

where

aSHG = (φ1, φ2, φ3, φ4, ρ)
T
, (46)

bSHG = (P1, P2, P3, P4, P5)
T
, (47)

with

P1 = −(1/Λ)
∑
jkWjk, P2 = (1/Λ)

∑
jkWjkBjk,

P3 = (1/Λ)
∑
jkWjkOjk, P4 = −(1/Λ)

∑
jkWjkδjk,

P5 = (1/Λ)
∑
jkWjkOjkδjk,


(48)

and

Ojk = Bjk
(
4ε∞q

2
0 −B2

jk

)
, δjk = e−iBjkL. (49)

Now the unknowns for the SHG problem can be found
by solving (42), in a similar way to what was done for the
linear problem, and from this the SHG reflection coefficient
ρ can be found.

A plot of |ρ| versus frequency is given in Fig. 3. A dramatic
structure is evident and, as with the linear reflection, is
also present in the reststrahl region. So SHG reflection
measurements are expected to be a sensitive probe of size
effects in nanoscale ferroelectric thin films according to the
model presented in this paper.

The numerical values calculated for the SHG reflection
coefficient are much smaller than for the linear one. This
is to be expected since SHG is a second-order nonlinear
effect. This numerical result is consistent with that found
by Murgan et al. (2004), but their work did not include
the mode due to the D term. Also the general features of
the SHG reflection coefficient are similar to a brief SHG
study that was done by Stamps and Tilley (1999) for a free
standing film. However the effect of the metal substrate
considered here has made the SHG reflection features more
pronounced.

It is also of interest to compare the numerical values here
with experimental studies. Many SHG reflection exper-
imental studies have covered optical frequencies higher
than the far-infrared frequencies that are relevant to the
work in this paper. It is hoped that our work will stim-
ulate more experimental work in the far-infrared region.
Detailed numerical work that is now in progress can then
be compared with such experiments.
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