
Symbolic Computation of Conservation
Laws, Generalized Symmetries, and
Recursion Operators for Nonlinear
Differential-Difference Equations ?

Ünal Göktaş ∗ Willy Hereman ∗∗

∗Department of Computer Engineering, Turgut Özal University,
Keçiören, Ankara 06010, Turkey (e-mail: unalgoktas@ttmail.com)
∗∗Department of Mathematical and Computer Sciences, Colorado
School of Mines, Golden, Colorado 80401-1887, U.S.A. (e-mail:

whereman@mines.edu)

Abstract: Algorithms for the symbolic computation of polynomial conservation laws, gen-
eralized symmetries, and recursion operators for systems of nonlinear differential-difference
equations (DDEs) are presented. The algorithms can be used to test the complete integrability
of nonlinear DDEs. The ubiquitous Toda lattice illustrates the steps of the algorithms, which
have been implemented in Mathematica. The codes InvariantsSymmetries.m and DDERe-
cursionOperator.m can aid researchers interested in properties of nonlinear DDEs.

Keywords: generalized symmetry, conservation law, recursion operator, complete integrability,
differential-difference equation.

1. INTRODUCTION

A large number of physically important nonlinear models
are completely integrable, i.e. they can be linearized via an
explicit transformation or can be solved with the Inverse
Scattering Transform. Completely integrable continuous
and discrete models arise in many branches of the applied
sciences and engineering, including classical, quantum, and
plasma physics, optics, electrical circuits, to name a few.
Mathematically, nonlinear models can be represented by
ordinary and partial differential equations (ODEs and
PDEs), differential-difference equations (DDEs), or ordi-
nary and partial difference equations (O∆Es and P∆Es).
This paper deals with integrable nonlinear DDEs.

Completely integrable equations have remarkable analytic
and geometric properties reflecting their rich mathemat-
ical structure. For instance, completely integrable PDEs
and DDEs possess infinitely many conserved quantities
and generalized (higher-order) symmetries of successive or-
ders. The existence of an infinite set of generalized symme-
tries can be established by explicitly constructing recursion
operators which connect such symmetries. Finding gener-
alized symmetries and recursion operators is a nontrivial
task, in particular, if attempted by hand. For example,
Göktaş (1998) and Hereman and Göktaş (1999) present an
algorithm to compute recursion operators for completely
integrable PDEs, which was only recently implemented in
Mathematica by Baldwin and Hereman (2010).

Based on earlier work by Göktaş (1998) and Göktaş and
Hereman (1998,1999), we present in this paper algorithms

? This material is based upon work supported by the National
Science Foundation (U.S.A.)under Grant No. CCF-0830783.

for the symbolic computation of conserved densities, gen-
eralized symmetries, and recursion operators of nonlinear
systems of DDEs. Such systems must be polynomial and
of evolution type, i.e. the DDEs must be of first order in
(continuous) time. The number of equations in the system,
degree of nonlinearity, and order (shift levels) are arbitrary.
Furthermore, the current algorithms only cover polynomial
densities, symmetries, and recursion operators.

We use the dilation (scaling) invariance of the system
of DDEs to determine the candidate density, symmetry,
or recursion operator. Indeed, these candidates are linear
combinations with undetermined coefficients of scaling
invariant terms. Upon substitution of the candidates into
the corresponding defining equations, one has to solve
a linear system for the undetermined coefficients. After
doing so, the coefficients are substituted into the density,
symmetry, or recursion operator. If so desired, the results
can be tested one more time, in particular, by applying the
recursion operators to generate the successive symmetries.

If the system of DDEs contains constant parameters, the
eliminant of the linear system for the undetermined coeffi-
cients gives the necessary conditions for the parameters, so
that the given DDEs admit the required density or symme-
try. In analogy with the PDE case in Göktaş and Hereman
(1997), the algorithms can thus be used to classify DDEs
with parameters according to their complete integrability
as illustrated by Göktaş and Hereman (1998,1999).

As shown by Fokas (1980), once the generalized symme-
tries are explicitly known, it is often possible to find the
recursion operator by inspection. If the recursion operator
is hereditary, as defined by Fuchssteiner et al. (1987), then
the equation will possess infinitely many symmetries.

If, in addition, the recursion operator is factorizable then
the equation has infinitely many conserved quantities.

Computer algebra systems can greatly help with the
search for conservation laws, generalized symmetries, and
recursion operators. The algorithms in this paper have
been implemented in Mathematica. The computer codes
(see Hereman (2010)), can be used to test the complete
integrability of systems of nonlinear DDEs, provided they
are polynomial and of first order (or can be written in that
form after a suitable transformation).

With InvariantsSymmetries.m, Göktaş (1998) and
Göktaş and Hereman (1998,1999) computed polynomial
conserved densities and generalized symmetries of many
well-known systems of DDEs. The existence of, say, a half
dozen conserved densities or generalized symmetries is a
predictor for complete integrability. Finding a recursion
operator then becomes within reach. An existence proof
(showing that there are indeed infinitely many densities or
generalized symmetries) must be done analytically, e.g., by
explicitly constructing the recursion operator which allows
one to generate the generalized symmetries order by order.
Numerous explicit examples have been reported in the
literature but novices could start with the book by Olver
(1993) to learn about recursion operators for PDEs. To
alleviate the burden of trying to find a recursion operator
by trial and error, we present a new Mathematica pro-
gram, DDERecursionOperator.m, based on the algo-
rithm in Section 5. Like InvariantsSymmetries.m, after
thorough testing, DDERecursionOperator.m will be
available from Hereman (2010).

If one cannot find a sufficient large number of densities
or symmetries (let alone, a recursion operator), then it
is unlikely that the DDE system is completely integrable,
at least in that coordinate representation. However, our
software does not allow one to conclude that a DDE is
not completely integrable merely based on the fact that
polynomial conserved densities and generalized symme-
tries could not be found. Polynomial DDEs that lack the
latter may accidentally have non-polynomial densities or
symmetries, or a complicated recursion operator, which is
outside the scope of the algorithm described in Section 5.

The paper is organized as follows. Basic definitions are
given in Section 2. In Section 3, we show the algorithm for
conservation laws, using the Toda lattice as an example.
Using the same example, Sections 4 and 5 cover the algo-
rithms for generalized symmetries and recursion operators,
respectively.

2. KEY DEFINITIONS

Consider a system of nonlinear DDEs of first order,

u̇n = F(un−`, ...,un−1,un,un+1, ...,un+m), (1)

where un and F are vector-valued functions with N com-
ponents. This paper only covers DDEs with one discrete
variable, denoted by integer n, which often corresponds
to the discretization of a space variable. The dot stands
for differentiation with respect to the continuous variable
(often time t). Each component of F is assumed to be a
polynomial with constant coefficients. If parameters are
present in (1), they will be denoted by lower-case Greek
letters. F depends on un and a finite number of forward

and backward shifts of un. We denote by ` (m, respec-
tively), the furthest negative (positive, respectively) shift
of any variable in the system. Restrictions are neither
imposed on the degree of nonlinearity of F, nor on the
integers l and m, which measure the degree of non-locality
in (1).

2.1 Leading Example: The Toda Lattice

One of the earliest and most famous examples of com-
pletely integrable DDEs is the Toda lattice, discussed in,
for instance, Toda (1981):

ÿn = exp (yn−1 − yn)− exp (yn − yn+1), (2)

where yn is the displacement from equilibrium of the nth
particle with unit mass under an exponential decaying in-
teraction force between nearest neighbors. In new variables
(un, vn), defined by un = ẏn, vn = exp (yn − yn+1), lattice
(2) can be written in polynomial form

u̇n = vn−1 − vn, v̇n = vn(un − un+1). (3)

The Toda lattice (3) will be used to illustrate the various
algorithms presented in subsequent sections of this paper.

2.2 Dilation Invariance

A DDE is dilation invariant if it is invariant under a
dilation (scaling) symmetry.

Example Lattice (3) is invariant under scaling symmetry

(t, un, vn)→ (λ−1t, λ1un, λ
2vn). (4)

2.3 Uniformity in Rank

We define the weight, w, of a variable as the exponent of
the scaling parameter (λ) which multiplies that variable.
Since λ can be selected at will, t will always be replaced
by t

λ and, thus, w(d
dt) = w(Dt) = 1.

Weights of dependent variables are nonnegative, rational,
and independent of n. For example, w(un−3) = · · · =
w(un) = · · · = w(un+2).

The rank, denoted by R, of a monomial is defined as the
total weight of the monomial. An expression is uniform in
rank if all of its terms have the same rank.

Dilation symmetries, which are special Lie-point symme-
tries, are common to many DDEs. Polynomial DDEs that
do not admit a dilation symmetry can be made scaling
invariant by extending the set of dependent variables with
auxiliary parameters with appropriate scales as discussed
by Göktaş and Hereman (1998,1999).

Example In view of (4), we have w(un) = 1, and
w(vn) = 2 for the Toda lattice.

In the first equation of (3), all the monomials have rank
2; in the second equation all the monomials have rank 3.
Conversely, requiring uniformity in rank for each equation
in (3) allows one to compute the weights of the dependent
variables (and, thus, the scaling symmetry) with simple
linear algebra. Balancing the weights of the various terms,

w(un) + 1 = w(vn), w(vn) + 1 = w(un) + w(vn), (5)

yields
w(un) = 1, w(vn) = 2, (6)

which confirms (4).

2.4 Up-Shift and Down-Shift Operator

We define the shift operator D by Dun = un+1. The
operator D is often called the up-shift operator or forward-
or right-shift operator. The inverse, D−1, is the down-
shift operator or backward- or left-shift operator, D−1un =
un−1. Shift operators apply to functions by their action on
the arguments of the functions. For example,

DF(un−`, · · · ,un−1,un,un+1, · · · ,un+m)

= F(Dun−`, · · · ,Dun−1,Dun,Dun+1, . . . ,Dun+m)

= F(un−`+1, . . . ,un,un+1,un+2, · · · ,un+m+1). (7)

2.5 Conservation Law

A conservation law of (1),

Dt ρ+ ∆ J = 0, (8)

connects a conserved density ρ to an associated flux J,
where both are scalar functions depending on un and its
shifts. In (8), which must holds on solutions of (1), Dt
is the total derivative with respect to time, ∆ = D − I
is the forward difference operator, and I is the identity
operator. For readability (in particular, in the examples),
the components of un will be denoted by un, vn, wn, etc.
In what follows we consider only autonomous functions,
i.e. F, ρ, and J do not explicitly depend on t and n.

A density is trivial if there exists a function ψ so that
ρ = ∆ψ. We say that two densities, ρ(1) and ρ(2), are
equivalent if and only if ρ(1) +kρ(2) = ∆ψ, for some ψ and
some non-zero scalar k. It is paramount that the density
is free of equivalent terms for if such terms were present,
they could be moved into the flux J.

Compositions of D or D−1 define an equivalence relation
(≡) on monomial terms. Simply stated, all shifted terms
are equivalent, e.g., un−1vn+1 ≡ unvn+2 ≡ un+2vn+4 ≡
un−3vn−1 since

un−1vn+1 = unvn+2 −∆(un−1vn+1)

= un+2vn+4−∆(un+1vn+3+unvn+2+un−1vn+1)

= un−3vn−1 + ∆(un−2vn + un−3vn−1). (9)

This equivalence relation also holds for any function of the
dependent variables, but for the construction of conserved
densities we will apply it only to monomial terms (ti) in
the same density, thereby achieving high computational
efficiency. In the algorithm used in Section 3, we will use
the following equivalence criterion: two monomial terms,
t1 and t2, are equivalent, t1 ≡ t2, if and only if t1 = Dr t2
for some integer r. If t1 ≡ t2 then t1 = t2 + ∆J for
some J dependent on un and its shifts. For example,
un−2un ≡ un−1un+1 because un−2un = D−1un−1un+1.
Hence, un−2un = un−1un+1 + [−un−1un+1 + un−2un] =
un−1un+1 + ∆J with J = −un−2un.
For efficiency, we need a criterion to choose a unique
representative from each equivalence class. There are a
number of ways to do this. We define the canonical
representative as that member that has (i) no negative
shifts and (ii) a non-trivial dependence on the local (that
is, zero-shifted) variable. For example, unun+2 is the
canonical representative of the class

{· · · , un−2un, un−1un+1, unun+2, un+1un+3, · · · }.

In the case of, e.g., two variables (un and vn), un+2vn is
the canonical representative of the class

{· · · , un−1vn−3, unvn−2, un+1vn−1, un+2vn, un+3vn+1, · · · }.
Alternatively, one could choose a variable ordering and
then choose the member that depends on the zero-shifted
variable of lowest lexicographical order. The code in Here-
man (2010) uses lexicographical ordering of the vari-
ables, i.e. un ≺ vn ≺ wn, etc. Thus, unvn−2 (instead
of un+2vn) is chosen as the canonical representative of
{· · · , un−1vn−3, unvn−2, un+1vn−1, un+2vn, un+3vn+1, · · · }.
It was shown by Hickman (2008) that if ρ is a density
then Dkρ is also a density. Hence, using an appropri-
ate “up-shift” all negative shifts in a density can be re-
moved. Without loss of generality, we thus assume that
a density that depends on q shifts has canonical form
ρ(un,un+1, · · · ,un+q).

Example Lattice (3) has infinitely many conservation
laws (see, e.g., Hénon (1974)). Here we list the densities of
rank R ≤ 4 :

ρ(1) = un, (10)

ρ(2) = 1
2u

2
n + vn, (11)

ρ(3) = 1
3u

3
n + un(vn−1 + vn), (12)

ρ(4) = 1
4u

4
n + u2n(vn−1 + vn) + unun+1vn

+ 1
2v

2
n + vnvn+1. (13)

The first two density-flux pairs are easily computed by
hand, and so is

ρ(0)n = ln(vn), (14)

which is the only non-polynomial density (of rank 0).

2.6 Generalized Symmetry

A vector function G(un) is called a generalized symmetry
of (1) if the infinitesimal transformation un → un + εG
leaves (1) invariant up to order ε. As shown by Olver
(1993), G must then satisfy

DtG = F′(un)[G] (15)

on solutions of (1), where F′(un)[G] is the Fréchet deriva-
tive of F in the direction of G.

For the scalar case (N = 1), the Fréchet derivative is

F ′(un)[G] =
∂

∂ε
F (un + εG)|ε=0 =

∑
k

∂F

∂un+k
DkG, (16)

which, in turn, defines the Fréchet derivative operator

F ′(un) =
∑
k

∂F

∂un+k
Dk. (17)

In the vector case with, say, components un and vn, the
Fréchet derivative operator is a matrix operator:

F′(un) =


∑
k

∂F1

∂un+k
Dk

∑
k

∂F1

∂vn+k
Dk

∑
k

∂F2

∂un+k
Dk

∑
k

∂F2

∂vn+k
Dk

 . (18)

Applied to G = (G1 G2)T, where T is transpose, one
obtains

Fi
′(un)[G] =

∑
k

∂Fi
∂un+k

DkG1 +
∑
k

∂Fi
∂vn+k

DkG2, (19)

with i = 1, 2. In (16) and (19) summation is over all posi-
tive and negative shifts (including k = 0). The generaliza-
tion of (18) to a N−component system is straightforward.

Example As computed by Hereman et al. (1998), the
first two non-trivial symmetries of (3) are

G(1) =

(
vn − vn−1

vn(un+1 − un)

)
, (20)

G(2) =

(
vn(un + un+1)− vn−1(un−1 + un)
vn(u2n+1 − u2n + vn+1 − vn−1)

)
. (21)

2.7 Recursion Operator

A recursion operator R connects symmetries

G(j+s) = RG(j), (22)

where j = 1, 2, · · · , and s is the gap length. The symme-
tries are linked consecutively if s = 1. This happens in
most (but not all) cases. For N -component systems, R is
an N ×N matrix operator.

With reference to Olver (1993) and Wang (1998), the
defining equation for R is

DtR+ [R,F′(un)]

=
∂R
∂t

+R′[F] +R ◦ F′(un)− F′(un) ◦ R = 0, (23)

where [,] denotes the commutator and ◦ the composition
of operators. The operator F′(un) was defined in (18).
R′[F] is the Fréchet derivative of R in the direction of
F. For the scalar case, the operator R is often of the form

R = U(un) O((D− I)−1,D−1, I,D) V (un), (24)

and then

R′[F] =
∑
k

(DkF)
∂U

∂un+k
OV +

∑
k

UO(DkF)
∂V

∂un+k
.

(25)
For the vector case, the elements of the N × N operator
matrix R are often of the form

Rij = Uij(un)Oij((D− I)−1,D−1, I,D)Vij(un). (26)

Hence, for the 2-component case

R′[F]ij =
∑
k

(DkF1)
∂Uij
∂un+k

Oij Vij

+
∑
k

(DkF2)
∂Uij
∂vn+k

Oij Vij

+
∑
k

UijOij (DkF1)
∂Vij
∂un+k

+
∑
k

UijOij (DkF2)
∂Vij
∂vn+k

. (27)

Example The recursion operator of (3) is

R=


unI D−1+I+(vn−vn−1)(D−I)−1

1

vn
I

vnI+vnD un+1I+vn(un+1−un)(D−I)−1
1

vn
I

. (28)

It is straightforward to verify that RG(1) = G(2) with G(1)

in (20) and G(2) in (21).

3. ALGORITHM FOR CONSERVATION LAWS

As an example, we will compute the density ρ(3) (of rank
R = 3) given in (12).

3.1 Construct the Form of the Density

Start from V = {un, vn}, the set of dependent variables
with weights. List all monomials in u and v of rank
R = 3 or less: M = {u3n, u2n, unvn, un, vn}. Next, for
each monomial in M, introduce the correct number of
t-derivatives so that each term has rank 3. Using (3),
compute

d0u3n
dt0

= u3n,
d0unvn

dt0
= unvn,

du2n
dt

= 2unu̇n = 2unvn−1 − 2unvn,

dvn
dt

= v̇n = unvn − un+1vn,

d2un
dt2

=
du̇n
dt

=
d(vn−1 − vn)

dt
(29)

= un−1vn−1 − unvn−1 − unvn + un+1vn.

Gather the terms in the right hand sides in (29) to get
R = {u3n, unvn−1, unvn, un−1vn−1, un+1vn}.
Identify members belonging to the same equivalence
classes and replace them by their canonical representa-
tives. For example, unvn−1 ≡ un+1vn. Adhering to lexi-
cographical ordering, use unvn−1 instead of un+1vn. Do-
ing so, replace R by S = {u3n, unvn−1, unvn}, which has
the building blocks of the density. Linearly combine the
monomials in S with undetermined coefficients ci to get
the candidate density of rank 3 :

ρ = c1 u
3
n + c2 unvn−1 + c3 unvn. (30)

3.2 Compute the Undetermined Coefficients ci

Compute Dtρ and use (3) to eliminate u̇n and v̇n and their
shifts. Next, introduce the main representatives to get

E=(3c1−c2)u2nvn−1+(c3−3c1)u2nvn+(c3−c2)vnvn+1

+(c2 − c3)unun+1vn+(c2 − c3)v2n + ∆J, (31)

with

J = (c3 − c2)vn−1vn + c2un−1unvn−1 + c2v
2
n−1. (32)

Set E −∆J ≡ 0 to get the linear system

3c1 − c2 = 0, c3 − 3c1 = 0, c2 − c3 = 0. (33)

Select c1 = 1
3 and substitute the solution c1 = 1

3 , c2 = c3 =

1, into (30) and (32) to obtain ρ(3) in (12) with matching
flux J (3) = un−1unvn−1 + v2n−1.

4. ALGORITHM FOR SYMMETRIES

As an example, we will compute the symmetry G(2) =

(G
(2)
1 , G

(2)
2) of rank (3, 4) given in (21).

4.1 Construct the Form of the Symmetry

Listing all monomials in un and vn of ranks 3 and 4, or
less:

L1 = {u3n, u2n, unvn, un, vn},
L2 = {u4n, u3n, u2nvn, u2n, unvn, un, v2n, vn}.

Next, for each monomial in L1 and L2, introduce the
necessary t-derivatives so that each term exactly has ranks
3 and 4, respectively. At the same time, use (3) to remove
all t−derivatives. Doing so, based on L1,

d0

dt0
(u3n) = u3n,

d0

dt0
(unvn) = unvn,

d

dt
(u2n) = 2unu̇n = 2unvn−1 − 2unvn,

d

dt
(vn) = v̇n = unvn − un+1vn,

d2

dt2
(un) =

d

dt
(u̇n) =

d

dt
(vn−1 − vn)

= un−1vn−1 − unvn−1 − unvn + un+1vn.

Put the terms from the right hand sides into a set:

R1 = {u3n, un−1vn−1, unvn−1, unvn, un+1vn}.

Similarly, based on the monomials in L2, construct

R2 = {u4n, u2n−1vn−1, un−1unvn−1, u2nvn−1, vn−2vn−1, v2n−1,
u2nvn, unun+1vn, u

2
n+1vn, vn−1vn, v

2
n, vnvn+1}.

Linearly combine the monomials in R1 and R2 with unde-
termined coefficients ci to get the form of the components
of the candidate symmetry:

G
(2)
1 = c1 u

3
n + c2 un−1vn−1 + c3 unvn−1 + c4 unvn

+c5 un+1vn,

G
(2)
2 = c6 u

4
n + c7 u

2
n−1vn−1 + c8 un−1unvn−1 + c9 u

2
nvn−1

+c10 vn−2vn−1 + c11 v
2
n−1 + c12 u

2
nvn + c13 unun+1vn

+c14 u
2
n+1vn + c15 vn−1vn + c16 v

2
n + c17 vnvn+1. (34)

4.2 Compute the Undetermined Coefficients ci

To determine the coefficients ci, require that (15) holds on
any solution of (1). Compute DtG and use (1) to remove all
u̇n−1, u̇n, u̇n+1, etc. Compute the Fréchet derivative (19)
and, in view of (15), equate the resulting expressions. Treat
as independent all the monomials in un and their shifts, to
obtain the linear system that determines the coefficients
ci.

Apply the strategy to (3) with (34), to get

c1 = c6 = c7 = c8 = c9 = c10 = c11 = c13 = c16 = 0,

−c2 = −c3 = c4 = c5 = −c12 = c14 = −c15 = c17.

Set c17 = 1 and substitute (35) into (34) to get G(2) =

(G
(2)
1 , G

(2)
2), as given in (21).

To show how our algorithm filters out completely inte-
grable cases among parameterized systems of DDEs, con-
sider

u̇n = α vn−1 − vn, v̇n = vn (β un − un+1), (35)

where α and β are nonzero constant parameters. Ramani
et al. (1992) have shown that (35) is completely integrable
if and only if α = β = 1.

Using our algorithm, one can easily compute the com-
patibility conditions for α and β so that (35) admits a
polynomial symmetry, say, of rank (3, 4). The steps are as
above, however, the linear system for the ci is parameter-
ized by α and β and must be analyzed carefully (with,
e.g., Gröbner basis methods). This analysis leads to the
condition α = β = 1. Details are given in Göktaş and
Hereman (1998,1999).

5. ALGORITHM FOR RECURSION OPERATORS

We will now construct the recursion operator (28) for (3).
In this case all the terms in (23) are 2×2 matrix operators.

5.1 Determine the Rank of the Recursion Operator

The difference in the ranks of symmetries is used to
compute the rank of the elements of the recursion operator.
Use (6), (20) and (21) to compute

rank G(1) =

(
2
3

)
, rank G(2) =

(
3
4

)
. (36)

Assume that RG(1) = G(2) and use the formula

rankRij = rankG
(k+1)
i − rankG

(k)
j , (37)

to compute a rank matrix associated to the operator R :

rankR =

(
1 0
2 1

)
. (38)

5.2 Determine the Form of the Recursion Operator

We assume that R = R0+R1, where R0 is a sum of terms
involving D−1, I, and D. (The form of R1 will be discussed
below.) The coefficients of these terms are admissible
power combinations of un, un+1, vn, and vn−1 (which come
from the terms on the right hand sides of (3)), so that
all the terms have the correct rank. The maximum up-
shift and down-shift operator that should be included can
be determined by comparing two consecutive symmetries.
Indeed, if the maximum up-shift in the first symmetry is
un+p and the maximum up-shift in the next symmetry is
un+p+r, then the associated piece that goes into R0 must
have D,D2, . . . ,Dr. The same argument determines the
minimum down-shift operator to be included. For (3), get

R0 =

(
(R0)11 (R0)12
(R0)21 (R0)22

)
, (39)

with

(R0)11 = (c1un + c2un+1) I,

(R0)12 = c3D−1 + c4I,

(R0)21 = (c5u
2
n + c6unun+1 + c7u

2
n+1 + c8vn−1 + c9vn) I

+(c10u
2
n + c11unun+1 + c12u

2
n+1 + c13vn−1

+c14vn) D,

(R0)22 = (c15un + c16un+1) I.

As Hereman and Göktaş (1999) showed for the continu-
ous case, R1 is a linear combination (with undetermined
coefficients c̃jk) of all suitable products of symmetries and
covariants, i.e. Fréchet derivatives of densities, sandwich-
ing (D− I)−1. Hence,∑

j

∑
k

c̃jkG
(j)(D− I)−1 ⊗ ρ(k)

′

n , (40)

where ⊗ denotes the matrix outer product, defined as(
G

(j)
1

G
(j)
2

)
(D−I)−1 ⊗

(
ρ
(k)′
n,1 ρ

(k)′
n,2

)
=(

G
(j)
1 (D−I)−1ρ

(k)′
n,1 G

(j)
1 (D−I)−1ρ

(k)′
n,2

G
(j)
2 (D−I)−1ρ

(k)′
n,1 G

(j)
2 (D−I)−1ρ

(k)′
n,2

)
. (41)

Only the pair (G(1), ρ
(0)′
n) can be used, otherwise the ranks

in (38) would be exceeded. Use (14) and (19), to compute

ρ(0)′n =

(
0

1

vn
I

)
, (42)

From (40), after renaming c̃10 to c17, obtain

R1 =

 0 c17(vn−1−vn)(D−I)−1
1

vn
I

0 c17vn(un−un+1)(D−I)−1
1

vn
I

 . (43)

Add (39) and (43), to get

R = R0 +R1 =

(
R11 R12

R21 R22

)
, (44)

with

R11 = (c1un + c2un+1) I,

R12 = c3D−1 + c4I + c17(vn−1 − vn)(D− I)−1
1

vn
I,

R21 = (c5u
2
n + c6unun+1 + c7u

2
n+1 + c8vn−1 + c9vn) I

+(c10u
2
n + c11unun+1 + c12u

2
n+1 + c13vn−1 + c14vn)D,

R22=(c15un + c16un+1)I +c17vn(un − un+1)(D− I)−1
1

vn
I.

5.3 Determine the unknown coefficients

Compute all the terms in (23) to find the ci. Refer to
Hereman et al. (2004) for the details of the computation,
resulting in c2 = c5 = c6 = c7 = c8 = c10 = c11 = c12 =
c13 = c15 = 0, c1 = c3 = c4 = c9 = c14 = c16 = 1, and
c17 = −1. Substitute the constants into (44) to get (28).

ACKNOWLEDGEMENTS

J.A. Sanders, J.-P. Wang, M. Hickman, and B. Deconinck
are gratefully acknowledged for valuable discussions.

REFERENCES

D.E. Baldwin and W. Hereman, A symbolic algorithm
for computing recursion operators of nonlinear partial
differential equations, Int. J. Comput. Math., 87:1094–
1119, 2010.

A.S. Fokas, A symmetry approach to exactly solvable evo-
lution equations, J. Math. Phys., 21:1318–1325, 1980.

A.S. Fokas, Symmetries and integrability, Stud. Appl.
Math., 77:253–299, 1987.

B. Fuchssteiner, W. Oevel, and W. Wiwianka, Computer-
algebra methods for investigation of hereditary opera-
tors of higher order soliton equations, Comput. Phys.
Commun., 44:47–55, 1987.

Ü. Göktaş, Algorithmic Computation of Symmetries, In-
variants and Recursion Operators for Systems of Non-
linear Evolution and Differential-difference Equations,
Ph.D. Thesis, Colorado School of Mines, Golden, Col-
orado, 1998.

Ü. Göktaş and W. Hereman, Symbolic computation of
conserved densities for systems of nonlinear evolution
equations, J. Symb. Comput., 24:591–621, 1997.

Ü. Göktaş and W. Hereman, Computation of conservation
laws for nonlinear lattices, Physica D, 132:425–436,
1998.

Ü. Göktaş and W. Hereman, Algorithmic computation
of higher-order symmetries for nonlinear evolution and
lattice equations, Adv. Comput. Math., 11:55–80, 1999.

M. Hénon, Integrals of the Toda lattice, Phys. Rev. B,
9:1921–1923, 1974.

W. Hereman, Software available at http://www.mines.
edu/~whereman/, 2010.

W. Hereman, Ü. Göktaş, M.D. Colagrosso and A.J. Miller,
Algorithmic integrability tests for nonlinear differential
and lattice equations, Comput. Phys. Comm., 115:428–
446, 1998.

W. Hereman and Ü. Göktaş, Integrability tests for nonlin-
ear evolution equations. In M. Wester, editor, Computer
Algebra Systems: A Practical Guide, pp. 211–232. Wiley,
New York, 1999.

W. Hereman, J.A. Sanders, J. Sayers, and J.-P. Wang,
Symbolic computation of polynomial conserved densi-
ties, generalized symmetries, and recursion operators for
nonlinear differential-difference equations. In P. Win-
ternitz et al., editors, Group Theory and Numerical
Analysis, CRM Proc. & Lect. Ser., volume 39, pp. 267–
282. AMS, Providence, Rhode Island, 2004.

M. Hickman, Leading order integrability conditions for
differential-difference equations. J. Nonl. Math. Phys.,
15:66–86, 2008.

P.J. Olver, Applications of Lie Groups to Differential
Equations, Springer Verlag, New York, 2nd edition,
1993.

A. Ramani, B. Grammaticos and K.M. Tamizhmani, An
integrability test for differential-difference systems, J.
Phys. A: Math. Gen., 25:L883–L886, 1992.

M. Toda, Theory of Nonlinear Lattices, Springer Verlag,
Berlin, 1981.

J.-P. Wang, Symmetries and Conservation Laws of Evolu-
tion Equations, Ph.D. Thesis, Thomas Stieltjes Institute
for Mathematics, Amsterdam, 1998.

