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Abstract: We analyze the K(m,n) equation by means of the theory of symmetry reductions of
partial differential equations. It is found that some similarity solutions are solutions with physical
interest: source solutions and traveling-wave solutions. Moreover some particular solutions
among the above types of solutions are obtained.
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1. INTRODUCTION

Rosenau and Hyman Rosenau and Hyman [1993] studied
the role of nonlinear dispersive in the formation of patterns
in liquid drops of the nonlinear dispersive equations

ut + umux + (un)xxx = 0, (1)

for m > 0, 1 < n ≤ 3. They also introduced a class of
solitary wave solutions with compact support, i.e. the ab-
sence of infinite wings or the absence of infinite tails, called
compactons. In addition to compactons, Rosenau [1997]
proved that the nonlinear dispersive equations K(m,n)

ut ± a(um)x + (un)xxx = 0, a const.,

which exhibit a number of remarkable dispersive effects,
can support kinks and solitons with infinite slopes, peri-
odic waves and dark solitons with cusps all being man-
ifestations of nonlinear dispersion in action. For n < 0
the enhanced dispersion at the tail may generate alge-
braically decaying patterns. Other solitary-wave solutions
of K(m,n) equations were also found by Rosenau [1994,
1998].

There is no existing general theory for solving nonlin-
ear partial differential equations (PDE’s). Due to the
great advance in computation in the last years a great
progress is being made in the development of methods
and their applications to nonlinear PDE’s for finding
exact solutions. For instance, classical Lie method, non-
classical method, classical potential symmetries method,
nonclassical potential symmetries method, simplest equa-
tion method, (G’/G)-expansion method and extended sim-
plest equation method were applied by Bruzón et al.
[2007,2008], Bruzón and Gandarias [2008,2009], Bluman
and Kumei [1989], Gandarias [1997], Kudryashov [2005],
Bruzón [2009], Kudryashov and Loguinova [2008], among
other.

Local symmetries admitted by a PDE are useful for finding
invariant solutions. These solutions are obtained by using
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group invariants to reduce the number of independent
variables. The fundamental basis of the technique is that,
when a differential equation is invariant under a Lie group
of transformations, a reduction transformation exists. The
machinery of the Lie group theory provides a system-
atic method to search for these special group invariant
solutions. For PDE’s with two independent variables, as
equation (1) is, a single group reduction transform PDE’s
into ordinary differential equations (ODE’s), which are
generally easier to solve than the original PDE.

In this paper we study the K(m,n) equation

ut + aumux + b(un)xxx = 0, (2)

with a, b,m, n ∈ R∗ from the point of view of the theory
of symmetry reductions in partial differential equations.
By using this theory, we find that for the K(m,n) equa-
tion some similarity solutions are solutions with physical
interest which is the case of traveling-wave solutions and
source solutions.

2. CLASSICAL SYMMETRIES

To apply the classical method to equation (2) with a, b 6= 0
we consider the one-parameter Lie group of infinitesimal
transformations in (x, t, u) given by

x∗ = x+ ǫξ(x, t, u) +O(ǫ2),
t∗ = t+ ǫτ(x, t, u) +O(ǫ2),
u∗ = u+ ǫη(x, t, u) +O(ǫ2),

where ǫ is the group parameter. We require that this trans-
formation leaves invariant the set of solutions of (2). This
yields to an overdetermined, linear system of equations
for the infinitesimals ξ(x, t, u), τ(x, t, u) and η(x, t, u). The
associated Lie algebra of infinitesimal symmetries is the set
of vector fields of the form

v = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u. (3)

Invariance of equation(2) under a Lie group of point
transformations with infinitesimal generator (3) leads to
a set of nineteen determining equations. The solutions of
this system depend on the parameters of equation (2). If



a, b, n and m are arbitrary constants with a, b,m, n ∈ R∗

the symmetries admitted by (2) are the group of space and
time translations, which are defined by the infinitesimal
generators

v1 = ∂x, v2 = ∂t,

and the generator

v3 =
1

2
(n−m− 1)x∂x +

1

2
(n− 3m− 1)t∂t + u∂u.

If m = n = 1 we obtain a new symmetry for equation (2)

v4 = at∂x + ∂u

In this case equation (2) is the Korteweg-de Vries equation.
This equation has been studied extensively by Ablowitz
and Segur [1981], Clarkson and Kruskal [1989], Das [1989],
Miura [1976]. In particular, by means of the inverse scat-
tering method, by applying the direct method that involves
no group theoretical techniques and the Bäcklund trans-
formation has been determined by Newell [1976].

Having determined the infinitesimals for the k(m,n) equa-
tion, the symmetry variables are found by solving the
invariant surface condition

Φ ≡ ξ∂x + τ∂t − η = 0. (4)

REDUCTION 1. From v1 + v2 we obtain traveling wave
reductions

z = µx− λt, u = h(z),

where h(z), after integrating once with respect to z,
satisfies

h′′ +
n− 1

h
(h′)

2
+

a

bµ2n (m+ 1)
hm−n+2 −

λ

bµ3n
h2−n

+
k1

b µ3 n
h1−n = 0,

l(5)

where k1 is an integrating constant.

REDUCTION 2. From v3 the similarity variable and the
similarity solution are:

z = xt−
n−m−1
n−3m−1 , u = t

2
n−3m−1 h(z).

This transformation reduces equation (2) into

bnhn+2h′′′ −
n−m− 1

n− 3m− 1
zh3h′ +

2

n− 3m− 1
h4

+b (n− 2) (n− 1)nhn (h′)
3
+ 3b (n− 1)nhn+1h′h′′

−a hm+3h′ = 0.

(6)

ANALYSIS OF THE REDUCED EQUATIONS.

EQUATION (5).

By making the change of variables

hn = y (7)

equation (5) becomes

y′′ =
(m+ 1) y

1
n λ− a µ y

m+1
n − k1 m− k1

(bm+ b) µ3
. (8)

After multiplying (8) by 2y′ and integrating once with
respect to z we get

(y′)2 =
2 (m+ 1) y

1
n
+1 λ

(bmµ3 + b µ3)
(

1
n
+ 1

)

−
2 a µ y

m

n
+ 1

n
+1

(bmµ3 + b µ3)
(

m
n
+ 1

n
+ 1

)

−
2 k1 (m+ 1) y

bmµ3 + b µ3
+ k2 ,

(9)

where k2 is an integrating constant.

From equation (9) we obtain the following solutions for
equation (5).

Theorem 1. Equation (5) admits in the following cases
solutions in terms of the Jacobi elliptic functions h =
α snβ(z, k) or h = α cnβ(z, k), where α and β are constants
different to zero:

1. For n = 1
2 , m = − 1

2 ,

1.1. a =
√
3 (k+1) λ
3 k µ

√

− k
λ
, b =

√
3 λ

6 k µ3

√

− k
λ
, k is arbitrary,

α =
−3k

λ
and β = 4.

1.2. a =
√
3 (2 k−1) λ

3 k µ

√

− k
(k−1) λ , b = −

√
3 λ

6 k µ3

√

− k
(k−1) λ , k

is arbitrary, α =
9 k2

(k − 1)
2
λ2

and β = 4.

1.3. a =
√
3
√
1−k (2 k−1)

√
λ

3 (k−1)
√
k µ

, b = −
√
3
√
1−k

√
λ

6 (k−1)
√
k µ3

, k is

arbitrary, α = −
3 (k − 1)

k λ
and β = −4.

2. For m = 2(n− 1),

2.1. a = α2(1−n) (2n−1) (3n−1)λ
µ (n+1) , b = α1−n (1−n)2 λ

2µ3 n (n+1) , k = −1,

α is arbitrary and β = − 2
1−n

.

2.2. a = α2(n−3) (2n−1) (n+3) λ
µ (3(n−1)) , b = −

α−n+m−1 (3−n)2 λ

2µ3 n (3(n−1)) ,

k = −1, α is arbitrary and β = − 2
3−n

.

3. For n = 1, m = 2, a = 6 k λ
α2 (k+1)µ , b = − λ

(k+1)µ3 , k and

α arbitraries and β = 1.

4. For n = 1
3 , m = − 2

3 , a =

(

α
2
3 (k+1)

)

λ

6 k µ
, b = α

2
3 λ

2 k µ3 , k and

α arbitraries and β = 3.

5. For n = 1, a = α−m (m+1) (m+2)λ
2µ

, b = m2 λ
4µ3 , k = 0, α

arbitrary and β = 2
m
.

6. For m = n− 1, a = 2α1−n n2 λ
µ (n+1) , b = α1−n (1−n)2 λ

2µ3 n (1+n) , k = 0,

α arbitrary and β = 2
n−1 .



EQUATION (6). We can see that equation (6) admits
for m = n−1

3 one group corresponding to the operator

w1 = z∂z +
h
m
∂h. Transformation

z = t, u = x
3

n−1 h(z) (10)

reduces equation (6) to

−
3n (1 + 2n) (2 + n)

(1− n)
3 hn +

3 a

(n− 1)
h

n+2
3 + h′ = 0.

For n = 1
2 and m = − 1

2 equation (6) admits one group
corresponding to the operator w2 = ∂z . We find that for
the new variables (invariants of the first prolongation of
w2) y = h and ϕ = h′ equation (6) takes the following
form

b n
(

ϕ2 ϕ′′ + ϕ3 (ϕ′)
2
)

yn+2 − aϕ yn+2

+3 b (n− 1) nϕ2 ϕ′ yn+1

+b (n− 2) (n− 1) nϕ3 yn + 2 y2n+3 = 0.

3. TRAVELING WAVE AND SOURCE SOLUTIONS
FOR THE K(M,N) EQUATION

Traveling wave solutions. From theorem 1 by making

u(x, t) = h(µx− λt) (11)

we obtain the following exact solutions for the K(m,n)
equation (2).

From theorem 1 with m, n, a and b given in the different
cases:

1.1.

u(x, t) =
−3k

λ
sn4(µx− λt, k).

1.2.

u(x, t) = −
3 k

(k − 1) λ
cn4(µx− λt, k).

1.3.

u(x, t) = −
3 (k − 1)

k λ
cn−4(µx− λt, k).

2.1.

u(x, t) = α sn−
2

1−n (µx− λt,−1).

2.2.

u(x, t) = α sn−
2

3−n (µx− λt,−1).

3.

u(x, t) = α sn(µx− λt, k).

4.

u(x, t) = α sn3(µx− λt, k).

5.

u(x, t) = α sech
2
m (µx− λt).

6.

u(x, t) = α sin
2

n−1 (µx− λt).

Source solutions. If n = 3 +m the similarity solution has
the form

u(x, t) =
1

t
2

m−5

h

(

x

t
2

m−5

)

,
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Fig. 1. Solution (12) for µ = 1 and λ = − 1
2

thus, if m > 5 it is clear that u(x, t) → δ(x) as t → 0 and
the similarity solution is a source solution.

4. SOME EXAMPLES

Below we get some solutions with physical interest:

From 3 we obtain that

u(x, t) =
1

4
tanh(µx− λt) (12)

is a solution of equation (2) with n = 1, m = 2, a = 48λ
µ

and b = − λ
2µ3 . In Figure 1 we plot solution (12) with µ = 1

and λ = − 1
2 which describes a kink solution.

From 4 we obtain that

u(x, t) = tanh3(µx− λt) (13)

is a solution of equation (2) with n = 1
3 , m = − 2

3 , a = λ
3µ

and b = λ
2µ3 . In Figure 2 we plot solution (13) with µ = 1

and λ = 1
2 which describes an anti-kink solution.

5. CONCLUSIONS

We have studied the one-dimensional K(m,n) equation
(2), by making use of the theory of symmetry reductions
in differential equations, and by focusing our attention in
those aspects with physical interest. In this way, besides
obtaining a complete classification of the Lie symmetries
admitted by (2) depending on the values of the parameters
a, b,m, n, we have also found:

• K(m,n) equation (2) for m > 5 admits source
solutions.

• K(m,n) equation (2) has traveling wave solutions.
Making use of these reduction transformations, we
obtain some particular traveling-wave solutions for
the cases above: kink and anti-kink.
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Fig. 2. Solution (13) for µ = 1 and λ = 1
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