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Abstract: This paper deals with the unsteady heat transfer effects due to a sudden introduction
of heat source/sink on a steady viscous boundary layer MHD flow and heat transfer over
a linearly stretching sheet subjected to a constant temperature. Governing boundary layer
equations have been solved by an implicit finite difference method. Numerical results show
that the steady state is reached quickly for a heat sink or for a large Prandtl number. The time
to reach steady state increases under magnetic field. Upto a critical value of the strength of heat
source, steady solution exists.
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1. INTRODUCTION

Steady heat transfer analysis in the presence of heat source
has been receiving wide attention among the researchers
due to its applications in polymer extrusion process, met-
allurgical process, drawing of artificial fibres etc. Recently,
Liu (2005) studied heat and mass transfer in a MHD
flow past a stretching sheet including the chemically re-
active species of order one and internal heat generation
or absorption. Xu (2005) studied the free convective heat
transfer characteristics in an electrically conducting fluid
near an isothermal sheet with internal heat generation or
absorption.

Viscous dissipation effect along with heat transfer in
MHD viscoelastic fluid flow over a stretching sheet was
studied by Abel and Mahesha (2008). Their study also
includes the effect of variable thermal conductivity, non-
uniform heat source and radiation. Khan (2006) studied
the effect of heat transfer on a viscoelastic fluid flow over
a stretching sheet with heat source/sink, suction/blowing
and radiation.

Pal and Talukdar (2010) studied the unsteady MHD
heat and mass transfer along with heat source past a
vertical permeable plate using a perturbation analysis,
where the unsteadiness is caused by the time dependent
surface temperature and concentration. Unsteady flow
and heat transfer over an unsteady stretching sheet was
studied by Ishak et al. (2009). Liu and Andersson (2008)
have also studied the heat and flow transfer over an
unsteady stretching sheet. Unsteady flow and heat transfer
with viscous dissipation of a non-Newtonian fluid over an
unsteady stretching sheet was considered by Chen (2006).
Radiation effect on the unsteady flow and heat transfer
over an unsteady stretching sheet was studied using fifth

⋆

order Runge-Kutta-Fehlberg integration scheme by El-
Aziz (2009). Chebyshev finite difference method was used
by Tsai et al. (2008) to study the unsteady flow and heat
transfer over an unsteady stretching surface with non-
uniform heat source. Mukhopadhyay (2009) studied the
unsteady heat and flow transfer along with radiation effect
over an unsteady stretching sheet. It must be noted that
the unsteadiness in Ishak et al. (2009)-Tsai et al. (2008)
are due to time-dependent stretching rate and temperature
of the sheet. In the present paper, the transient changes in
the temperature field is due to the sudden introduction of
the heat source/sink on the steady MHD boundary layer
flow and heat transfer past a linearly stretching isothermal
sheet. The effects of heat source/sink, magnetic field and
Prandtl number on the temperature field are analysed.

2. MATHEMATICAL FORMULATION

2.1 Initial state (t′ ≤ 0)

Consider a steady two dimensional laminar boundary layer
flow and heat transfer of an incompressible electrically
conducting Newtonian fluid past a linearly stretching
isothermal sheet under a transverse magnetic field of
strength B0. The sheet issues from a thin slit at x′ =
0, y′ = 0, where x′-axis is along the horizontal direction
of flow, y′-axis is normal(vertically upwards) to the flow;
u′ and v′ are the horizontal and vertical components
of velocity along x′ and y′-directions respectively. The
stretching speed is proportional to the distance from the
origin along the x′-direction, and the stretching rate is β(>
0). The sheet is assumed to be at constant temperature
T ′

w, far away the constant ambient fluid temperature is
T ′
∞ and T ′

0 is the temperature of the fluid. Under these
assumptions, the governing steady state boundary layer
equations for the time t

′

≤ 0 are given by Char (1994) as,
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subjected to the boundary conditions,
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where ρ is the density, µ is the viscosity, ν is the kinematic
viscosity, σ is the electric conductivity and α is the thermal
diffusivity of the fluid.

Defining the dimensionless variables and parameters,
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the equations governing the initial state take the dimen-
sionless form,
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subjected to the boundary conditions,

y = 0 : u = x, v = 0, T0 = 1, for x ≥ 0,

y → ∞ : u → 0, T0 → 0, for x ≥ 0.
(10)

The Eqs. (7)-(10) admit a closed form solution, which is
given by,
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where a = Pr
1+M

and F (a0, a1, z) is the Kummer’s function

(Char (1994)).

Substituting η = y
√

1 + M in Eq. (12) one can get the
solution obtained by Char (1994), and Kumari and Nath
(2009).

2.2 Transient heat transfer (t′ > 0)

Assuming that the flow and temperature field when t′ ≤ 0,
are given by Eqs. (11) and (12), a heat source/sink of
constant strength Q′ is introduced at time t′ = 0 in the
fluid flow and maintained for t′ > 0. When t′ > 0, the
equation governing the transient heat transfer is given by,
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subjected to the boundary conditions,

t′ > 0 : T ′ = T ′
w at y′ = 0, T ′ → T ′

∞ as y′ → ∞. (14)

Introducing the dimensionless quantities (along with
Eq. (5) and (6)),

t = βt′, T (x, y, t) =
T ′ − T ′

∞
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∞
, Q =
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β
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the dimensionless transient temperature field due to the
sudden introduction of heat source/sink is given by,
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t > 0 : T = 1 at y = 0, T → 0 as y → ∞, (17)

t ≤ 0 : T = T0(y), for x ≥ 0, y ≥ 0, (18)

where the flow field is governed by Eq. (11) for t > 0 also
and T0(y) is given by Eq. (12).

At steady state(when t → ∞), Eqs. (16) and (17) admit a
closed form solution, which is given by,
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where K =
√

a2 − 4aQ.

The form of K imposes a restriction on Q such that
Q ≤ Qc where Qc = Pr

4(1+M) .

The local skin friction defined by, τ ′
x = −µ
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the dimensionless form,
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The dimensionless form of the local Nusselt number is
given by,
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The dimensionless average Nusselt number averaged over
0 ≤ x ≤ 1, is given by
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Computations reveal that, T is indepedent of x for all time
(including t > 0). Hence,
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3. NUMERICAL SOLUTION

The numerical results for the unsteady state dimensionless
temperature distribution is computed by solving Eqs. (16)-
(18) using the implicit finite difference method of Crank-
Nicholson type (Muthucumaraswamy and Ganesan (2000),
Kumaran et al. (2010) and Kumaran et al. (2008)). For
the present problem when the Prandtl number Pr = 0.71,
the mesh size was taken as ∆x = 0.002, ∆y = 0.0125
and ∆t = 0.01. The domain of computation was taken
as 0 ≤ x ≤ 1 and 0 ≤ y ≤ 35. Whereas for Pr = 7.0,
the domain of computation was taken as 0 ≤ x ≤ 1
and 0 ≤ y ≤ 12. The convergence criteria was set as
∣

∣T n+1
i,j − T n

i,j

∣

∣ ≤ 1×10−5, where i, j denote the mesh point
along the x-axis, y-axis respectively and n denotes the
number of iterations with respect to time.



4. RESULTS AND DISCUSSION

The effects of heat source/sink have been studied for
various values of the parameters namely, the heat source
(Q > 0)/heat sink (Q < 0) parameter, magnetic param-
eter M and Prandtl number Pr. The Fig. 1 describe the
profiles of steady state (t → ∞) excess temperature due
to heat source/heat sink. From the Figs. 1(a) and 1(b)
it is observed that the thermal boundary layer is thin
for Pr = 7.0 whereas it is thick for Pr = 0.71. The
temperature raises or drops if the the magnitude of the
heat source/heat sink increases respectively. These effects,
are more pronounced under magnetic field. From Table-
1 it is seen that the values of the computed steady local
Nusselt number at x = 1 are in good agreement with the
values of the exact steady local Nusselt number obtained
from Eq. (12).

The Figs. 2(a)-5(b) describe the evolution of the tempera-
ture profiles with respect to time. Increase in temperature
and decrease in temperature is seen to occur for positive
Q (heat source) and negative Q (heat sink) respectively.
Tables-2 and 3 give the time to reach steady state for
Pr = 0.71 and Pr = 7.0 for various values of Q. It
is observed that for an increase in strength of the heat
sink, the steady time decreases. The value Qc represents
the critical value given by Qc = Pr/(4(1 + M)). The
computations converges for Q ≤ Qc only. The steady state
time increases with an increase in Q, M and decreases with
an increase in Pr. Steady state is reached very quickly
for Pr = 7.0 when compared to Pr = 0.71. For Q > Qc

the computation doesnot terminate justifying the fact that
steady solution exists only for Q ≤ Qc. The excess average
Nusselt number increases with M whereas it decreases
with Q, as seen from Fig. 6.
The following important observations are made:

• A critical value Qc of strength of heat source exists
beyond which no steady solution exists.

• Reaching steady state is delayed under magnetic field.
• The steady state time decreases with an increase in

Prandtl number Pr.
• Steady state is reached quickly for a heat sink whereas

it is delayed for a heat source of same strength.
• The local Nusselt number decreases with an increase

in M , Q and for a decrease in Pr.
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Fig. 1. Profiles of the steady state excess temperature due
to heat source/sink (a) M = 0, (b) M = 2.
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Fig. 2. Profiles of the transient excess temperature due to
heat source for M = 0 (a) Pr = 0.71, (b) Pr = 7.0.
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Fig. 3. Profiles of the transient excess temperature due
to heat sink of strength Q = −1 and M = 0 (a)
Pr = 0.71, (b) Pr = 7.0.
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Fig. 4. Profiles of the transient excess temperature due to
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Fig. 5. Profiles of the transient excess temperature due
to heat sink of strength Q = −1 for M = 2 (a)
Pr = 0.71, (b) Pr = 7.0.
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Table 1. Values of the steady local Nux at
x = 1 where Qc = Pr

4+4M

Pr M Q (Exact) Nux (Computed) Nux

0.71 0 -1 -0.9826 -0.9822
0.0 -0.4585 -

Qc/2 -0.3657 -0.3699

2 -1 -0.9521 -0.9517
0 -0.3379 -

Qc/2 -0.2850 -0.2919

7.0 0 -1 -3.2271 -3.2257
0.0 -1.8954 -

Qc/2 1.1703 1.1625

2 -1 -3.1714 -3.17
0 -1.7352 -

Qc/2 -1.0058 -1.0136

Table 2. The values of t∗, the time to reach
steady state for Pr = 0.71

Q
−1.0 −0.5 0 0.04 Qc/4 Qc/2 Qc

0 3.71 5.02 6.48 5.86 6.00 10.34 40.57
M 1 4.30 6.25 8.52 11.79 7.08 13.04 40.43

2 4.62 6.96 9.36 20.62 7.43 14.74 42.53

Table 3. The values of t∗, the time to reach
steady state for Pr = 7.0

Q
−1.0 −0.5 0 0.04 Qc/4 Qc/2

0 2.40 3.78 3.14 3.16 5.84 16.93
M 1 2.65 3.15 3.61 3.62 5.01 9.26

2 2.85 3.47 4.01 4.01 4.95 8.51



Nomenclature

B0 strength of the magnetic field, kgs−2A−1

M dimensionless magnetic parameter, Eq. (6)
n number of iterations
Nux local Nusselt number
Nu average Nusselt number (over 0 ≤ x ≤ 1)
Pr Prandtl number
Q′ Heat source/sink strength, Wm−2

t′ time, s
T ′

w Temperature at the sheet, K
T ′
∞ Temperature of the ambient fluid, K

u′ velocity component along the sheet, ms−1

v′ velocity component normal to the sheet, ms−1

x′ coordinate along the sheet, m
y′ coordinate normal to the sheet, m
t dimensionless time
T0 dimensionless steady temperature, Eq. (12)
T dimensionless transient temperature, Eq. (16)
u dimensionless speed along the sheet
v dimensionless speed normal to the sheet
x dimensionless coordinate along the sheet
y dimensionless coordinate normal to the sheet
Greek symbol
α thermal diffusivity, m2s−1

β stretching rate, s−1

τx local skin friction, kgs−2m−1

∆t dimensionless step size with respect to time
∆x dimensionless step size along x
∆y dimensionless step size along y
η y

√
1 + M

τx dimensionless local skin friction
µ dynamic viscosity, kgm−1s−1

ν kinematic viscosity, m2s−1

ρ density, kgm−3

σ electric conductivity, kg−1m3A2

Subscript
w property at the wall
∞ free stream condition


