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Abstract: This paper deals with the pressure in steady two-dimensional/axisymmetric
MHD/Brinkman flow of an incompressible viscous electrically conducting fluid over a flat
stretching sheet. Stretching rate of two-dimensional case is assumed as double the stretching
rate of axisymmetric case. A recently proposed approximate analytic technique (Kumaran
et al. (2009)) was used to recover an exact solution of the two-dimensional case, to develop an
approximate analytical solutions of the axisymmetric case and were discussed by Kumaran and
Tamizharasi (2010). In this paper, the pressure distribution is studied in detail. The pressure
distribution of MHD and porous cases are plotted and compared. Also two-dimensional and
axisymmetric cases are compared by means of a unified scale.
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1. INTRODUCTION

Flow past a stretching sheet has several important en-
gineering applications in the polymer processing unit of
a chemical plant and for the metal working process in
metallurgy. Flow of an incompressible viscous fluid over
a stretching sheet has an important bearing on several
technological processes, like in the extrusion of a poly-
mer in a melt-spinning process etc. Further the study of
magnetohydrodynamic(MHD) flow of an electrically con-
ducting fluid caused by the deformation of the walls of
the vessel containing this fluid is of considerable interest
in modern metallurgical and metal-working processes. An
exact similarity solution of the MHD boundary layer equa-
tions for the steady two-dimensional flow of an electrically
conducting incompressible fluid due to the stretching of a
plane elastic surface in the presence of a uniform transverse
magnetic field is presented by Pavlov (1974). The temper-
ature distribution in this flow when a uniform suction is
applied at the stretching surface is found by Chakrabarti
and Gupta (1979).
Andersson (1995) demonstrated that the similarity solu-
tion obtained by Pavlov (1974) is not only a solution of
the boundary layer equation but also represents an exact
solution of the Navier-Stokes equations for magnetohydro-
dynamic flow. Ariel (1996) demonstrated that judiciously
produced approximate solutions of physical problems are
of high interest as they serve the practical purposes. Ap-
plying the idea of stretching the variables of the flow
concerned, he obtained a useful solution for the problem of
flow near a rotating disc. The MHD flow past a stretching
surface of a viscoelastic fluid is studied by Andersson
(1992), Ariel (1994), Dandapat et al. (1998), Sujit et al.
(2003), Abel and Nandeppanavar (2009), power-law fluid
by Andersson et al. (1992), micro-polar fluid by Eldabe

et al. (2005), second grade fluid by Sahoo (2010), upper
convected Maxwell fluid by Raftari and Yildirim (2010)
and unsteady three-dimensional fluid flow by Mehmood
et al. (2008) and Takhar et al. (2001) subject to various
physical characteristics. The magnetohydrodynamic flow
over a stretching sheet was further studied by Vajravelu
(1986), Takhar et al. (1987), Takhar et al. (1989), Kumari
et al. (1990), Vajravelu and Rollins (1992), Pop and Na
(1998), Chakraborty and Mazumdar (2000), Liao (2003),
Amkadni et al. (2008), Ishak et al. (2008), Kumaran et al.
(2009a) and Fang et al. (2009).
The Darcy, Brinkman and Forchhrimer equations describ-
ing the flow in a porous medium have been extensively
studied in Stranghan (1993). The flow along a stretch-
ing permeable surface in Darcy-Brinkman porous medium
has been investigated by Pantokratoras (2009). Various
characteristics of fluid immersed in a porous medium over
astretching sheet is also studied by Chamkha (1998) and
Liu (2006).
Though lot of work has been done on MHD/Brinkman
flows past a stretching sheet independently, to the best of
our knowledge a more detailed study of pressure distribu-
tion of two-dimensional and axisymmetric cases has not
been done so far. Hence in the present paper, the steady
two-dimensional/axisymmetric flow of an incompressible
viscous MHD/Brinkman flow past a stretching sheet is
revisited. Also pressure field is analysed and compared
between the MHD and porous medium cases.

2. MATHEMATICAL FORMULATION:
TWO-DIMENSIONAL CASE

Consider a two-dimensional steady flow of an incom-
pressible viscous electrically conducting fluid impinging
vertically downwards on a horizontal deformable sheet,



stretched in its own plane z̄ = 0, from x̄=0, z̄=0 where
x̄, z̄ are cartesian co-ordinates along the horizontal and
vertical directions. Velocity field in cartesian form is given
by V̄ = (ū, 0, v̄) where ū, v̄ are the velocity components
along x̄, z̄ directions repectively. The stretching velocity
is U0 = 2k0x̄, along x̄ direction where 2k0 (k0 > 0) is
the constant stretching rate. K is the permeability of the
porous medium, B is a constant applied magnetic field
and ν, ρ, σ are the kinematic viscosity, density, electrical
conductivity of the fluid respectively. Assuming K → ∞
when B 6= 0, B = 0 when K is finite and p̄(x̄, z̄) as the
pressure distribution, the flow is governed by the following
equations:
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with the boundary conditions,

ū = U0, v̄ = 0 at z̄ = 0, (4)

ū→ 0 as z̄ → ∞. (5)

where D1 = σB2

ρ
, in case of MHD flow and ν

K
, in case

of porous medium. D2 = 0, in the case of MHD flow
and ν

K
, in case of porous medium. The magnetic field

with strength B is applied in the vertical direction and
the induced magnetic field is neglected. Using the velocity
scale C =

√
2νk0, the dimensionless variables and the non-

dimensional parameters are defined as,
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where ψ̄(x̄, z̄) is the stream function which is given by,

ū(x̄, z̄) =
∂ψ̄

∂z̄
, v̄(x̄, z̄) = −∂ψ̄

∂x̄
. (7)

Boundary conditions (4) and (5) suggest ψ in the dimen-
sionless form as,

ψ(ξ, η) = ξg(η). (8)

Equations (4) and (5) become,

g(0) = 0, g′(0) = 1, g′(∞) = 0, (9)

where primes denote the differentiation with respect to η.
Using equations (6)-(8), equations (1) -(3) become,

g′′′ + gg′′ − g′2 − βg′ = 0, (10)

For MHD flow, the dimensionless excess pressure with
respect to the dimensionless stagnation point pressure
p(0, 0) takes the form,

∆p = p(ξ, η) − p(0, 0) = 1 − g′ − g2

2
, (11)

whereas for the porous medium case, it is of the form,

∆p = p(ξ, η) − p(0, 0) = 1 − g′ − g2

2
+ β

η
∫

0

gdη. (12)

In both the cases, as ∆p is independent of ξ, the dimen-
sionless excess centreline pressure (∆p at ξ = 0) is given
by,

∆pc = p(0, η) − p(0, 0)) = ∆p. (13)

2.1 Analytic solution technique

Consider the following scaled variables,

x =
η√
ǫ
, F (x) =

g(η)√
ǫ
, ǫ =

1

a+ β
. (14)

where a, an artificial non–negative parameter a, to be
found later. Using the above variables in (10) and (9), we
get,

F ′′′ − F ′ + ǫ(FF ′′ − F ′2 + aF ′) = 0, (15)

F (0) = 0, F ′(0) = 1, F ′(∞) = 0. (16)

Expanding F (x) in powers of ǫ as,

F (x) = F0(x) + ǫF1(x) + ǫ2F2(x) + ... (17)

Using (17) in (15)-(16) and collecting co-efficients of pow-
ers of ǫ, we get the zeroth order boundary value problem
as,

F ′′′

0 − F ′

0 = 0, (18)

F0(0) = 0, F ′

0(0) = 1, F ′

0(∞) = 0. (19)

Note that Fk(x), k ≥ 0 are functions of x. Since F (x)
is a series in powers of ǫ, we consider only nth order
approximate solutions in the form,

g(η) ≈ gn(η) =
√
ǫ(

n
∑

k=0

ǫkFk(x)). (20)

Also, the total residual of (10) with respect to gn(η) is
defined as,

R(n, a, β) =
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It is also possible to get the regular perturbation solution
of (10) and (9), if a is chosen as zero in (14).

2.2 Solution for two-dimensional case

For the two-dimensional case, the zeroth order solution
yields the values of the artificial non-negative parameter
a and the corresponding redidual error R as a0 = 1
(obtained by minimizing the equation (21)) and R0 = 0
for β = 0. As a result, the zeroth order solution itself is
an exact analytical solution of (10) and (9), which holds
good for both MHD/Brinkman flow and is given by

g(η) ≡ g0(η) =
1 − e−η

√
1+β

√
1 + β

. (22)

This solution is also reported in Andersson (1992) and
Dandapat and Gupta (1989). For the two-dimensional



MHD flow, the dimensionless excess pressure distribution
is given in the form,

∆p =
1

2(1 + β)
[(1 − e−η

√
1+β)(1 + 2β + e−η

√
1+β)]. (23)

And the dimensionless excess pressure distribution of the
two-dimensional porous medium case takes the form,
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1
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[1 − e−2η

√
1+β + 2βη

√

1 + β]. (24)

3. AXISYMMETRIC CASE

Consider a viscous incompressible MHD/Brinkman flow
past a horizontal deformable sheet stretching radially in
its own plane with radial speed U0 = k0x̄, where k0(> 0) is
the stretching rate and x̄ is the radial co-ordinate. Taking
vertical co-ordinate as z̄ with the assumption that the
sheet is on z̄ = 0. The velocity field in cylindrical co-
ordinates is given by V̄ = (ū, 0, v̄) where ū, v̄ are the
velocity components along x̄, z̄ directions respectively with
p̄(x̄, z̄) is the pressure field, ν, ρ, K and σ are as in section
2, the Navier-Stokes equations of rotational symmetry can
be written as,
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where D1 and D2 are as defined in two-dimensional case.
The boundary conditions take the form,

ū = U0, v̄ = 0 at z̄ = 0, (28)

ū = 0 as z̄ → ∞. (29)

The non-dimensional form of ψ̄ is,

ψ =
Cψ̄

ν2
. (30)

The velocity scale C, other dimensionless variables and
the non-dimensional parameters are as defined in section
2. The stream function ψ̄(x̄, z̄) is given by,
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Boundary conditions (28) and (29) suggest ψ in the
dimensionless form as,

ψ(ξ, η) =
ξ2

2
g(η). (32)

Then using equations (6) except for ψ, (29)-(31), the
equations
(25) -(29) become,

g′′′ + gg′′ − 1

2
g′2 − βg′ = 0, (33)

g(0) = 0, g′(0) = 1, g′(∞) = 0. (34)

The axisymmetric pressure distribution is the same as
defined for the two-dimensional case except that g(η) is
given by (33)-(34).

3.1 Solution for axisymmetric case

Using the scaled variables defined in equation (14), equa-
tions (33)-(34) become

F ′′′ − F ′ + ǫ(FF ′′ − 1

2
F ′2 + aF ′) = 0, (35)

F (0) = 0, F ′(0) = 1, F ′(∞) = 0. (36)

Again using (17) in equations (35)and (36) and collecting
co-efficients of powers of ǫ, we get equations (18)-(19)
as the zeroth order boundary value problem and the
approximate solutions are also considered in the form of
equation (20). And the total residual of (33) with respect
to gn(η) is defined as,

R(n, a, β) =

√
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2
g′2n − βg′n)2dη (37)

For this axisymmetric case, the obtained zeroth order a
and R values are a0 = 0.68750 and R0 = 0.12309.
As finding exact analytical solution of (33) with respect
to (34) is not possible by us, we obtain an approximate
analytical solution of the same upto eight order for the
axisymmetric (Brinkman) case and is briefly explained in
the paper communicated by Kumaran and Tamizharasi
(2010) using an analytic technique proposed by Kumaran
et al. (2009). The dimensionless excess pressure distribu-
tion of the axisymmteric (MHD/Brinkman) case is found
using the eighth order approximation for g(η) given by
(33) and (34).

4. DISCUSSION

Table 1 shows the values of the ratio (between two-
dimensional and axisymmetric) of excess pressures as η →
∞ of MHD and porous cases for various values of β. The
observations made are:
(i) When β = 0, for both MHD and porous medium
cases, far away from the sheet, the excess pressure of two-
dimensional flow is ≈ 1.15 times the axisymmetric excess
pressure.
(ii) As β increases, the ratio of excess pressures as η → ∞
of MHD flow gradually decreases and approaches 1, when
β → ∞.
(iii) For the porous medium case, as η → ∞, the ratio
of excess pressures decrease, attains local minimum excess
pressure ratio 0.94116 at β = 0.006, then behaves in an
increasing fashion and thereby reaches 1, when β → ∞.
Figs. 1 and 2 show the profiles of excess pressure of the
two-dimensional flow of MHD and porous medium cases
for various values of β. The remarks made are:
(i) In both MHD and porous medium cases, near the sheet,
as β and η increases, excess pressure also increases.
(ii) For the MHD flow, irrespective of the values of β,
excess pressure becomes constant for large η.
(iii) In porous medium case, for large η, excess pressure



Table 1. Values of ratio of excess pressures
∆p0(∞)
∆p8(∞) for the MHD and porous medium cases

(∆p0(∞): two-dimensional, ∆p8(∞): axisym-
metric)

β MHD porous

0 1.14892 1.14892

1 1.02684 0.96295

5 1.00250 0.98654

10 1.00072 0.99255

50 1.00003 0.99837

100 1.00001 0.99918

Β = 10, 1, 0

0 2 4 6 8 10
Η

1.00

0.50

0.20

0.30

0.70

pcHΗL-pH0,0L

Fig. 1. nmhdp: Profiles of ∆p Vs η: MHD two-dimensional
case(0th order)

becomes constant for β = 0. But for β > 0, as η increases,
pressure is completely in an increasing manner and it goes
up to infinity. It is more pronounced with β.
Figs. 3 and 4 display the profiles of ratio of excess center-
line pressure of two-dimensional and axisymmetric flows
of the MHD and porous medium cases for various values
of β. Fig. 4 is also discussed in Kumaran and Tamizharasi
(2010). Some observations made from the figures are:
(i) ∆(∆pc) decreases for increasing β near the sheet.
(ii) Near the sheet: ∆(∆pc) is uniform to some extent of
η, then keeps reducing and after some specific value of
η, it later becomes a constant in the potential flow, for
increasing η and for all β. It is seen that two-dimensional
(in both MHD and porous medium cases) ∆pc is slightly
greater than the axisymmetric (in both MHD and porous
medium cases) ∆pc, as two-dimensional ∆pc is
≈ 1.21 times the axisymmetric ∆pc, in case of β=0.
≈ 1.09 times the axisymmetric ∆pc, in case of β=1.
≈ 1.02 times the axisymmetric ∆pc, in case of β=10.
(iii) Away from the sheet: It is interesting to note the
existence of cross over of β = 1 profile with that of β = 10
at some particular η, in the porous medium case. Due
to that cross over, ∆(∆pc) corresponding to β = 1 is
dominated by β = 10 case. It is also confirmed by table 1.
It is instructive to note that all these results correspond
to stretching rate of two-dimensional case is double that
of the stretching rate of axisymmetric case.
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